

July 2010 Doc ID 14400 Rev 5 1/266

RM0013
Reference manual

STM8L101xx microcontroller family

Introduction
This reference manual targets application developers. It provides complete information on
how to use the STM8L101xx microcontroller memory and peripherals.

The STM8L is a family of microcontrollers with different memory densities, packages and
peripherals. The STM8L is designed for low power applications.

For ordering information, pin description, mechanical and electrical device characteristics,
please refer to the STM8L datasheets.

For information on the STM8 SWIM communication protocol and debug module, please refer
to the User Manual (UM0470).

For information on the STM8 core, please refer to the STM8 CPU Programming Manual
(PM0044).

www.st.com

http://www.st.com

Contents RM0013

2/266 Doc ID 14400 Rev 5

Contents

1 Memory and register map . 17

1.1 Register description abbreviations . 17

2 Central processing unit (CPU) . 18

2.1 Introduction . 18

2.2 CPU registers . 18

2.2.1 Description of CPU registers . 18

2.2.2 STM8 CPU register map . 22

2.3 Global configuration register (CFG_GCR) . 22

2.3.1 Activation level . 22

2.3.2 SWIM disable . 23

2.3.3 Description of global configuration register (CFG_GCR) 23

2.3.4 Global configuration register map and reset values 23

3 Single wire interface module (SWIM) and debug module (DM) 24

3.1 Introduction . 24

3.2 Main features . 24

3.3 SWIM modes . 24

4 Flash program memory and data EEPROM (Flash) 25

4.1 Introduction . 25

4.2 Glossary . 25

4.3 Flash main features . 25

4.4 Memory organization . 26

4.4.1 User boot area (UBC) . 26

4.4.2 Data EEPROM (DATA) . 27

4.4.3 Main program area . 28

4.4.4 Option bytes . 28

4.5 Memory protection . 28

4.5.1 Readout protection . 28

4.5.2 Memory access security system (MASS) . 28

4.6 Memory programming . 30

4.6.1 Byte programming . 30

RM0013 Contents

Doc ID 14400 Rev 5 3/266

4.6.2 Word programming . 31

4.6.3 Block programming . 32

4.7 ICP and IAP . 34

4.8 Flash registers . 35

4.8.1 Flash control register 1 (FLASH_CR1) . 35

4.8.2 Flash control register 2 (FLASH_CR2) . 36

4.8.3 Flash program memory unprotecting key register (FLASH_PUKR) . . . 37

4.8.4 Data EEPROM unprotection key register (FLASH_DUKR) 37

4.8.5 Flash status register (FLASH_IAPSR) . 38

4.8.6 Flash register map and reset values . 39

5 Interrupt controller (ITC) . 40

5.1 ITC introduction . 40

5.2 Interrupt masking and processing flow . 40

5.2.1 Servicing pending interrupts . 41

5.2.2 Interrupt sources . 42

5.3 Interrupts and low power modes . 43

5.4 Activation level/low power mode control . 44

5.5 Concurrent and nested interrupt management . 44

5.5.1 Concurrent interrupt management mode . 44

5.5.2 Nested interrupt management mode . 45

5.6 External interrupts . 46

5.7 Interrupt instructions . 47

5.8 Interrupt mapping . 47

5.9 ITC and EXTI registers . 48

5.9.1 CPU condition code register interrupt bits (CCR) 48

5.9.2 Software priority register x (ITC_SPRx) . 49

5.9.3 External interrupt control register 1 (EXTI_CR1) 50

5.9.4 External interrupt control register 2 (EXTI_CR2) 51

5.9.5 External interrupt control register 3 (EXTI_CR3) 52

5.9.6 External interrupt status register 1 (EXTI_SR1) 53

5.9.7 External interrupt status register 2 (EXTI_SR2) 54

5.9.8 External interrupt port select register (EXTI_CONF) 55

5.9.9 ITC and EXTI register map and reset values . 56

6 Power supply . 57

Contents RM0013

4/266 Doc ID 14400 Rev 5

7 Reset (RST) and voltage detection . 58

7.1 “Reset state” and “under reset” definitions . 58

7.2 External reset (NRST pin) . 58

7.2.1 Asynchronous external reset description . 58

7.2.2 Configuring NRST/PA1 pin as general purpose output 59

7.3 Internal reset . 59

7.3.1 Power-on reset (POR) . 59

7.3.2 Independent watchdog reset . 59

7.3.3 SWIM reset . 59

7.3.4 Illegal opcode reset . 59

7.4 RST registers . 60

7.4.1 Reset pin configuration register (RST_CR) . 60

7.4.2 Reset status register (RST_SR) . 60

7.5 RST register map and reset values . 61

8 Clock control (CLK) . 62

8.1 Master clock (HSI clock) . 63

8.1.1 Peripheral clock gating (PCG) . 63

8.2 LSI clock . 64

8.3 Configurable clock-output capability (CCO) . 64

8.4 CLK registers . 65

8.4.1 Clock divider register (CLK_CKDIVR) . 65

8.4.2 Peripheral clock gating register (CLK_PCKENR) 65

8.4.3 Configurable clock output register (CLK_CCOR) 66

8.4.4 CLK register map and reset values . 67

9 Power management . 68

9.1 General considerations . 68

9.2 Managing the clock for low consumption . 69

9.2.1 Slowing the system clocks . 69

9.2.2 Peripheral clock gating . 69

9.3 Switching peripherals off . 69

9.3.1 Analog peripherals . 69

9.3.2 Digital peripherals . 69

9.4 Low power modes . 70

9.4.1 Wait mode . 71

RM0013 Contents

Doc ID 14400 Rev 5 5/266

9.4.2 Halt mode . 72

9.4.3 Active-halt mode . 72

9.5 WFE registers . 73

9.5.1 WFE control register 1 (WFE_CR1) . 73

9.5.2 WFE control register 2 (WFE_CR2) . 74

9.6 WFE register map and reset values . 75

10 General purpose I/O ports (GPIO) . 76

10.1 Introduction . 76

10.2 GPIO main features . 76

10.3 Port configuration and usage . 77

10.3.1 Input modes . 79

10.3.2 Output modes . 79

10.4 Reset configuration . 79

10.5 Unused I/O pins . 79

10.6 Low power modes . 79

10.7 Input mode details . 80

10.7.1 Alternate function input . 80

10.7.2 Interrupt capability . 80

10.8 Output mode details . 80

10.8.1 Alternate function output . 80

10.8.2 Slope control . 80

10.9 GPIO registers . 81

10.9.1 Port x output data register (Px_ODR) . 81

10.9.2 Port x pin input register (Px_IDR) . 81

10.9.3 Port x data direction register (Px_DDR) . 82

10.9.4 Port x control register 1 (Px_CR1) . 82

10.9.5 Port x control register 2 (Px_CR2) . 83

10.9.6 GPIO register map and reset values . 83

11 Auto-wakeup (AWU) . 84

11.1 Introduction . 84

11.2 LSI clock measurement . 84

11.3 AWU functional description . 85

11.3.1 AWU operation . 85

11.3.2 Time base selection . 86

Contents RM0013

6/266 Doc ID 14400 Rev 5

11.3.3 LSI clock frequency measurement . 87

11.4 AWU registers . 88

11.4.1 Control/status register (AWU_CSR) . 88

11.4.2 Asynchronous prescaler register (AWU_APR) 89

11.4.3 Timebase selection register (AWU_TBR) . 89

11.4.4 AWU register map and reset values . 90

12 Beeper (BEEP) . 91

12.1 Introduction . 91

12.2 BEEP functional description . 92

12.2.1 Beeper operation . 92

12.2.2 Beeper calibration . 92

12.3 BEEP registers . 93

12.3.1 Beep control/status register (BEEP_CSR) . 93

12.3.2 BEEP register map and reset values . 93

13 Independent watchdog (IWDG) . 94

13.1 Introduction . 94

13.2 IWDG functional description . 94

13.3 IWDG registers . 96

13.3.1 Key register (IWDG_KR) . 96

13.3.2 Prescaler register (IWDG_PR) . 96

13.3.3 Reload register (IWDG_RLR) . 97

13.3.4 IWDG register map and reset values . 97

14 Inter-integrated circuit (I2C) interface . 98

14.1 Introduction . 98

14.2 I2C main features . 98

14.3 I2C general description . 99

14.4 I2C functional description . 101

14.4.1 I2C slave mode . 101

14.4.2 I2C master mode . 104

14.4.3 Error conditions . 112

14.4.4 SDA/SCL line control . 113

14.5 I2C low power modes . 113

14.6 I2C interrupts . 114

RM0013 Contents

Doc ID 14400 Rev 5 7/266

14.7 I2C registers . 115

14.7.1 Control register 1 (I2C_CR1) . 115

14.7.2 Control register 2 (I2C_CR2) . 116

14.7.3 Frequency register (I2C_FREQR) . 117

14.7.4 Own address register LSB (I2C_OARL) . 118

14.7.5 Own address register MSB (I2C_OARH) . 118

14.7.6 Data register (I2C_DR) . 119

14.7.7 Status register 1 (I2C_SR1) . 120

14.7.8 Status register 2 (I2C_SR2) . 122

14.7.9 Status register 3 (I2C_SR3) . 123

14.7.10 Interrupt register (I2C_ITR) . 124

14.7.11 Clock control register low (I2C_CCRL) . 125

14.7.12 Clock control register high (I2C_CCRH) . 126

14.7.13 TRISE register (I2C_TRISER) . 128

14.7.14 I2C register map and reset values . 129

15 Infrared (IRTIM) interface . 130

15.1 Introduction . 130

15.2 Main features . 130

15.3 IRTIM register . 131

15.3.1 Control register (IR_CR) . 131

15.3.2 IRTIM register map and reset values . 131

16 Timer overview . 132

16.1 Timer feature comparison . 132

16.2 Glossary of timer signal names . 133

17 16-bit general purpose timer (TIM2/TIM3) . 135

17.1 Introduction . 135

17.2 TIMx main features . 135

17.3 TIMx time base unit . 137

17.3.1 Reading and writing to the 16-bit counter . 137

17.3.2 Write sequence for 16-bit TIMx_ARR register 138

17.3.3 Prescaler . 138

17.3.4 Up-counting mode . 138

17.3.5 Down-counting mode . 141

Contents RM0013

8/266 Doc ID 14400 Rev 5

17.3.6 Center-aligned mode (up/down counting) . 143

17.4 TIMx clock/trigger controller . 146

17.4.1 Prescaler clock (CK_PSC) . 146

17.4.2 Internal clock source (fMASTER) . 146

17.4.3 External clock source mode 1 . 147

17.4.4 External clock source mode 2 . 148

17.4.5 Trigger synchronization . 149

17.4.6 Synchronization from other timers . 153

17.5 TIMx capture/compare channels . 159

17.5.1 Write sequence for 16-bit TIMx_CCRi registers 160

17.5.2 Input stage . 160

17.5.3 Input capture mode . 161

17.5.4 Output stage . 164

17.5.5 Forced output mode . 165

17.5.6 Output compare mode . 165

17.5.7 PWM mode . 167

17.5.8 Using the break function . 171

17.5.9 Clearing the OCiREF signal on an external event 172

17.5.10 Encoder interface mode . 173

17.6 TIMx interrupts . 176

17.6.1 TIMx wait-for-event capability . 176

17.7 TIMx registers . 177

17.7.1 Control register 1 (TIMx_CR1) . 177

17.7.2 Control register 2 (TIMx_CR2) . 178

17.7.3 Slave mode control register (TIMx_SMCR) . 179

17.7.4 External trigger register (TIMx_ETR) . 180

17.7.5 Interrupt enable register (TIMx_IER) . 182

17.7.6 Status register 1 (TIMx_SR1) . 182

17.7.7 Status register 2 (TIMx_SR2) . 183

17.7.8 Event generation register (TIMx_EGR) . 184

17.7.9 Capture/compare mode register 1 (TIMx_CCMR1) 185

17.7.10 Capture/compare mode register 2 (TIMx_CCMR2) 187

17.7.11 Capture/compare enable register 1 (TIMx_CCER1) 188

17.7.12 Counter high (TIMx_CNTRH) . 189

17.7.13 Counter low (TIMx_CNTRL) . 189

17.7.14 Prescaler register (TIMx_PSCR) . 190

17.7.15 Auto-reload register high (TIMx_ARRH) . 190

RM0013 Contents

Doc ID 14400 Rev 5 9/266

17.7.16 Auto-reload register low (TIMx_ARRL) . 190

17.7.17 Capture/compare register 1 high (TIMx_CCR1H) 191

17.7.18 Capture/compare register 1 low (TIMx_CCR1L) 191

17.7.19 Capture/compare register 2 high (TIMx_CCR2H) 192

17.7.20 Capture/compare register 2 low (TIMx_CCR2L) 192

17.7.21 Break register (TIMx_BKR) . 193

17.7.22 Output idle state register (TIMx_OISR) . 195

17.7.23 TIMx register map and reset values . 196

18 8-bit basic timer (TIM4) . 198

18.1 Introduction . 198

18.2 TIM4 main features . 198

18.3 TIM4 interrupts . 198

18.4 TIM4 clock selection . 198

18.5 TIM4 registers . 200

18.5.1 Control register 1 (TIM4_CR1) . 200

18.5.2 Control register 2 (TIM4_CR2) . 201

18.5.3 Slave mode control register (TIM4_SMCR) . 202

18.5.4 Interrupt enable register (TIM4_IER) . 203

18.5.5 Status register 1 (TIM4_SR1) . 203

18.5.6 Event generation register (TIM4_EGR) . 204

18.5.7 Counter (TIM4_CNTR) . 204

18.5.8 Prescaler register (TIM4_PSCR) . 204

18.5.9 Auto-reload register (TIM4_ARR) . 205

18.5.10 TIM4 register map and reset values . 206

19 Serial peripheral interface (SPI) . 207

19.1 Introduction . 207

19.2 SPI main features . 207

19.3 SPI functional description . 208

19.3.1 General description . 208

19.3.2 Configuring the SPI in slave mode . 212

19.3.3 Configuring the SPI master mode . 212

19.3.4 Configuring the SPI for simplex communications 212

19.3.5 Data transmission and reception procedures 213

19.3.6 Status flags . 220

Contents RM0013

10/266 Doc ID 14400 Rev 5

19.3.7 Disabling the SPI . 221

19.3.8 Error flags . 222

19.3.9 SPI low power modes . 223

19.3.10 SPI interrupts . 224

19.4 SPI registers . 225

19.4.1 SPI control register 1 (SPI_CR1) . 225

19.4.2 SPI control register 2 (SPI_CR2) . 226

19.4.3 SPI interrupt control register (SPI_ICR) . 227

19.4.4 SPI status register (SPI_SR) . 228

19.4.5 SPI data register (SPI_DR) . 229

19.5 SPI register map and reset values . 229

20 Universal synchronous/asynchronous receiver
transmitter (USART) . 230

20.1 USART introduction . 230

20.2 USART main features . 231

20.3 USART functional description . 232

20.3.1 USART character description . 234

20.3.2 Transmitter . 235

20.3.3 Receiver . 237

20.3.4 High precision baud rate generator . 241

20.3.5 USART receiver’s tolerance to clock deviation 242

20.3.6 Parity control . 243

20.3.7 Multi-processor communication . 243

20.3.8 USART synchronous communication . 245

20.4 USART low power modes . 248

20.5 USART interrupts . 248

20.6 USART registers . 249

20.6.1 Status register (USART_SR) . 249

20.6.2 Data register (USART_DR) . 251

20.6.3 Baud rate register 1 (USART_BRR1) . 251

20.6.4 Baud rate register 2 (USART_BRR2) . 252

20.6.5 Control register 1 (USART_CR1) . 252

20.6.6 Control register 2 (USART_CR2) . 253

20.6.7 Control register 3 (USART_CR3) . 255

20.6.8 Control register 4 (USART_CR4) . 256

RM0013 Contents

Doc ID 14400 Rev 5 11/266

20.6.9 USART register map and reset values . 257

21 Comparators (COMP) . 258

21.1 Introduction . 258

21.2 Main features . 258

21.3 Functional description . 260

21.4 Low power modes . 260

21.5 Interrupts . 260

21.6 COMP registers . 261

21.6.1 Comparator control register (COMP_CR) . 261

21.6.2 Comparator control status register (COMP_CSR) 262

21.6.3 Comparator channel selection (COMP_CCS) 263

21.6.4 COMP register map and reset values . 263

22 Revision history . 264

List of tables RM0013

12/266 Doc ID 14400 Rev 5

List of tables

Table 1. Interrupt levels . 21
Table 2. CPU register map . 22
Table 3. CFG_GCR register map . 23
Table 4. Block size . 33
Table 5. Memory access versus programming method . 34
Table 6. Flash register map . 39
Table 7. Software priority levels . 41
Table 8. Vector address map versus software priority bits . 46
Table 9. External interrupt sensitivity . 47
Table 10. Dedicated interrupt instruction set . 47
Table 11. ITC and EXTI register map . 56
Table 12. RST register map and reset values . 61
Table 13. Peripheral clock gating bits . 65
Table 14. CLK register map and reset values . 67
Table 15. Low power mode management . 70
Table 16. WFE register map. 75
Table 17. I/O port configuration summary . 78
Table 18. Effect of low power modes on GPIO ports . 79
Table 19. GPIO register map . 83
Table 20. Time base calculation table . 86
Table 21. AWU register map . 90
Table 22. BEEP register map . 93
Table 23. Min/Max IWDG timeout (LSI clock frequency = 38 kHz). 95
Table 24. IWDG register map . 97
Table 25. I2C interface behavior in low power modes . 113
Table 26. I2C Interrupt requests . 114
Table 27. I2C_CCR values for SCL frequency table (fMASTER = 10 MHz or 16 MHz). 127
Table 28. I2C register map . 129
Table 29. IR register map . 131
Table 30. Timer characteristics. 132
Table 31. Timer feature comparison. 132
Table 32. Glossary of internal timer signals . 133
Table 33. Counting direction versus encoder signals . 174
Table 34. Output control bit for OCx channels with break feature . 194
Table 35. TIMx register map. 196
Table 36. TIM4 register map. 206
Table 37. SPI behavior in low power modes . 223
Table 38. SPI interrupt requests . 224
Table 39. SPI register map and reset values . 229
Table 40. Noise detection from sampled data . 240
Table 41. Baud rate programming and error calculation . 242
Table 42. USART receiver ‘s tolerance when USART_DIV is 0 . 242
Table 43. USART receiver’s tolerance when USART_DIV is different from 0 243
Table 44. Frame formats . 243
Table 45. USART interface behavior in low power modes . 248
Table 46. USART interrupt requests. 248
Table 47. USART register map. 257
Table 48. Comparator behavior in low power modes . 260

RM0013 List of tables

Doc ID 14400 Rev 5 13/266

Table 49. Comparator interrupt requests . 260
Table 50. Comparator register map . 263
Table 51. Document revision history . 264

List of figures RM0013

14/266 Doc ID 14400 Rev 5

List of figures

Figure 1. Programming model . 19
Figure 2. Stacking order. 20
Figure 3. SWIM pin connection . 24
Figure 4. Low density STM8L101x Flash program and data EEPROM organization 26
Figure 5. UBC area size definition for low density STM8L101x devices . 27
Figure 6. Interrupt processing flowchart . 41
Figure 7. Priority decision process . 42
Figure 8. Concurrent interrupt management . 45
Figure 9. Nested interrupt management . 46
Figure 10. Power supply overview . 57
Figure 11. Reset circuit . 58
Figure 12. Clock structure . 62
Figure 13. GPIO block diagram . 77
Figure 14. AWU block diagram . 84
Figure 15. Beep block diagram . 91
Figure 16. Independent watchdog block diagram . 94
Figure 17. I2C bus protocol . 99
Figure 18. I2C block diagram . 100
Figure 19. Transfer sequence diagram for slave transmitter . 102
Figure 20. Transfer sequence diagram for slave receiver . 103
Figure 21. Transfer sequence diagram for master transmitter. 106
Figure 22. Method 1: transfer sequence diagram for master receiver . 108
Figure 23. Method 2: transfer sequence diagram for master receiver when N >2. 109
Figure 24. Method 2: transfer sequence diagram for master receiver when N=2 110
Figure 25. Method 2: transfer sequence diagram for master receiver when N=1 111
Figure 26. I2C interrupt mapping diagram . 114
Figure 27. IR internal hardware connections with TIM2 and TIM3. 130
Figure 28. TIMx general block diagram . 136
Figure 29. Time base unit . 137
Figure 30. 16-bit read sequence for the counter (TIMx_CNTR). 138
Figure 31. Counter in up-counting mode . 139
Figure 32. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2 140
Figure 33. Counter update event when ARPE=1 (TIMx_ARR preloaded). 141
Figure 34. Counter in down-counting mode. 141
Figure 35. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2 142
Figure 36. Counter update when ARPE=1 (ARR preloaded), with prescaler = 1 143
Figure 37. Counter in center-aligned mode . 143
Figure 38. Counter timing diagram, CK_PSC divided by 1, TIMx_ARR=06h, ARPE=1 144
Figure 39. Clock/trigger controller block diagram . 146
Figure 40. Control circuit in normal mode, fMASTER divided by 1 . 147
Figure 41. TI2 external clock connection example. 147
Figure 42. Control circuit in external clock mode 1 . 148
Figure 43. External trigger input block . 148
Figure 44. Control circuit in external clock mode 2 . 149
Figure 45. Control circuit in trigger mode. 150
Figure 46. Control circuit in trigger reset mode . 150
Figure 47. Control circuit in trigger gated mode. 151
Figure 48. Control circuit in external clock mode 2 + trigger mode . 152

RM0013 List of figures

Doc ID 14400 Rev 5 15/266

Figure 49. Timer chaining system implementation example . 153
Figure 50. Trigger/master mode selection blocks . 153
Figure 51. Master/slave timer example . 154
Figure 52. Gating Timer B with OC1REF of Timer A . 155
Figure 53. Gating Timer B with the counter enable signal of Timer A (CNT_EN) 156
Figure 54. Triggering Timer B with update event of Timer A (TIMERA-UEV) 157
Figure 55. Triggering Timer B with counter enable CNT_EN of Timer A . 157
Figure 56. Triggering Timer A and B with Timer A TI1 input . 158
Figure 57. Capture/compare channel 1 main circuit . 159
Figure 58. 16-bit read sequence for the TIMx_CCRi register in capture mode 160
Figure 59. Channel input stage block diagram . 160
Figure 60. Input stage of TIM 1 channel 1 . 161
Figure 61. PWM input signal measurement . 163
Figure 62. PWM input signal measurement example . 164
Figure 63. Channel output stage block diagram . 164
Figure 64. Output stage of channel 1. 164
Figure 65. Output compare mode, toggle on OC1. 166
Figure 66. Edge-aligned counting mode PWM mode 1 waveforms (ARR=8) 168
Figure 67. Center-aligned PWM waveforms (ARR=8) . 169
Figure 68. Example of one pulse mode . 170
Figure 69. Behavior of outputs in response to a break . 172
Figure 70. ETR activation . 173
Figure 71. Example of counter operation in encoder interface mode . 175
Figure 72. Example of encoder interface mode with IC1 polarity inverted. 175
Figure 73. TIM4 block diagram . 198
Figure 74. SPI block diagram. 208
Figure 75. Single master/ single slave application. 209
Figure 76. Hardware/software slave select management . 209
Figure 77. Data clock timing diagram . 211
Figure 78. TXE/RXNE/BSY behavior in full duplex mode (RXONLY = 0).

Case of continuous transfers . 216
Figure 79. TXE/RXNE/BSY behavior in slave / full duplex mode

(BDM = 0, RXONLY = 0). Case of continuous transfers. 216
Figure 80. TXE/BSY in master transmit-only mode

(BDM = 0 and RXONLY = 0). Case of continuous transfers. 217
Figure 81. TXE/BSY in slave transmit-only mode (BDM = 0 and RXONLY = 0).

Case of continuous transfers . 218
Figure 82. RXNE behavior in receive-only mode (BDM = 0 and RXONLY = 1).

Case of continuous transfers . 219
Figure 83. TXE/BSY behavior when transmitting (BDM = 0 and RXLONY = 0).

Case of discontinuous transfers . 220
Figure 84. STM8L USART block diagram . 233
Figure 85. Word length programming . 234
Figure 86. Configurable STOP bits . 235
Figure 87. TC/TXE behavior when transmitting . 237
Figure 88. Start bit detection . 238
Figure 89. Data sampling for noise detection . 240
Figure 90. How to code USART_DIV in the BRR registers . 241
Figure 91. Mute mode using Idle line detection . 244
Figure 92. Mute mode using address mark detection . 245
Figure 93. USART example of synchronous transmission. 246
Figure 94. USART data clock timing diagram (M=0) . 247

List of figures RM0013

16/266 Doc ID 14400 Rev 5

Figure 95. USART data clock timing diagram (M=1) . 247
Figure 96. RX data setup/hold time . 247
Figure 97. USART interrupt mapping diagram . 248
Figure 98. Comparator block diagram . 259

RM0013 Memory and register map

Doc ID 14400 Rev 5 17/266

1 Memory and register map

For details on the memory map, I/O port hardware register map and CPU/SWIM/debug
module/interrupt controller registers, refer to the product datasheets.

1.1 Register description abbreviations
In the register descriptions of each chapter in this reference manual, the following
abbreviations are used:

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits.

write only (w)
Software can only write to this bit. Reading the bit returns a meaningless
value.

read/write once (rwo)
Software can only write once to this bit but, can read it at any time. Only a
reset can return this bit to its reset value.

read/clear (rc_w1)
Software can read and clear this bit by writing 1. Writing ‘0’ has no effect on
the bit value.

read/clear (rc_w0)
Software can read and clear this bit by writing 0. Writing ‘1’ has no effect on
the bit value.

read/set (rs) Software can read and set this bit. Writing ‘0’ has no effect on the bit value.

read/clear by read
(rc_r)

Software can read this bit. Reading this bit automatically clears it to ‘0’.

Writing ‘0’ has no effect on the bit value.

Central processing unit (CPU) RM0013

18/266 Doc ID 14400 Rev 5

2 Central processing unit (CPU)

2.1 Introduction
The CPU has an 8-bit architecture. Six internal registers allow efficient data manipulations.
The CPU is able to execute 80 basic instructions. It features 20 addressing modes and can
address six internal registers. For the complete description of the instruction set, refer to the
STM8 microcontroller family programming manual (PM0044).

2.2 CPU registers
The six CPU registers are shown in the programming model in Figure 1. Following an
interrupt, the registers are pushed onto the stack in the order shown in Figure 2. They are
popped from stack in the reverse order. The interrupt routine must therefore handle it, if
needed, through the POP and PUSH instructions.

2.2.1 Description of CPU registers

Accumulator (A)

The accumulator is an 8-bit general purpose register used to hold operands and the results
of the arithmetic and logic calculations as well as data manipulations.

Index registers (X and Y)

These are 16-bit registers used to create effective addresses. They may also be used as a
temporary storage area for data manipulations and have an inherent use for some
instructions (multiplication/division). In most cases, the cross assembler generates a
PRECODE instruction (PRE) to indicate that the following instruction refers to the Y register.

Program counter (PC)

The program counter is a 24-bit register used to store the address of the next instruction to
be executed by the CPU. It is automatically refreshed after each processed instruction. As a
result, the STM8 core can access up to 16 Mbytes of memory.

RM0013 Central processing unit (CPU)

Doc ID 14400 Rev 5 19/266

Figure 1. Programming model

Stack pointer (SP)

The stack pointer is a 16-bit register. It contains the address of the next free location of the
stack. Depending on the product, the most significant bits can be forced to a preset value.

The stack is used to save the CPU context on subroutine calls or interrupts. The user can
also directly use it through the POP and PUSH instructions.

The stack pointer can be initialized by the startup function provided with the C compiler. For
applications written in C language, the initialization is then performed according to the
address specified in the linker file for C users. If you use your own linker file or startup file,
make sure the stack pointer is initialized properly (with the address given in the datasheets).
For applications written in assembler, you can use either the startup function provided by ST
or write your own by initializing the stack pointer with the correct address.

The stack pointer is decremented after data has been pushed onto the stack and
incremented after data is popped from the stack. It is up to the application to ensure that the
lower limit is not exceeded.

A subroutine call occupies two or three locations. An interrupt occupies nine locations to
store all the internal registers (except SP). For more details refer to Figure 2.

Note: The WFI/HALT instructions save the context in advance. If an interrupt occurs while the CPU
is in one of these modes, the latency is reduced.

07
A ACCUMULATOR

07815
SP STACK POINTERSH S

X INDEX

Y INDEX

07815
PC PROGRAM COUNTERPCH PCL

07
CC CODE CONDITIONV I1 H I0 N Z C

1623
PCE

07815
XH XL

07815
XH XL

0

Central processing unit (CPU) RM0013

20/266 Doc ID 14400 Rev 5

Figure 2. Stacking order

Condition code register (CC)

The condition code register is an 8-bit register which indicates the result of the instruction
just executed as well as the state of the processor. The 7th bit (MSB) of this register is
reserved. These bits can be individually tested by a program and specified action taken as a
result of their state. The following paragraphs describe each bit:

● V: Overflow

When set, V indicates that an overflow occurred during the last signed arithmetic operation,
on the MSB result bit. See the INC, INCW, DEC, DECW, NEG, NEGW, ADD, ADDW, ADC,
SUB, SUBW, SBC, CP, and CPW instructions.

● I1: Interrupt mask level 1

The I1 flag works in conjunction with the I0 flag to define the current interruptability level as
shown in Table 1. These flags can be set and cleared by software through the RIM, SIM,
HALT, WFI, IRET, TRAP, and POP instructions and are automatically set by hardware when
entering an interrupt service routine.

JUMP TO INTERRUPT ROUTINE GIVEN BY THE INTERRUPT VECTOR

INTERRUPT GENERATION (execute pipeline)

YH
YL

PCE

PCL

CC

STACK
(PUSH)

UNSTACK

IN
TER

R
U

PT

R
ETU

R
N

PCH

JUMP TO THE ADDRESS GIVEN BY PROGRAM COUNTER (Reload Pipeline)

IRET INSTRUCTION

(POP)

9 CPU CYCLES

9 CPU CYCLES
POP PCL
POP PCH
POP PCE

POP Y
POP X
POP A

POP CC

A
XH
XL

PUSH PCL
PUSH PCH
PUSH PCE

PUSH Y
PUSH X
PUSH A

PUSH CC

Complete instruction in execute stage (1-6 cycles latency)

RM0013 Central processing unit (CPU)

Doc ID 14400 Rev 5 21/266

● H: Half carry bit

The H bit is set to 1 when a carry occurs between the bits 3 and 4 of the ALU during an ADD
or ADC instruction. The H bit is useful in BCD arithmetic subroutines.

● I0: Interrupt mask level 0

See Flag I1.

● N: Negative

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is negative (i.e. the most significant bit is a logic 1).

● Z: Zero

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is zero.

● C: Carry

When set, C indicates that a carry or borrow out of the ALU occurred during the last
arithmetic operation on the MSB operation result bit. This bit is also affected during bit test,
branch, shift, rotate and load instructions. See the ADD, ADC, SUB, and SBC instructions.

In a division operation, C indicates if trouble occurred during execution (quotient overflow or
zero division). See the DIV instruction.

In bit test operations, C is the copy of the tested bit. See the BTJF and BTJT instructions.
In shift and rotate operations, the carry is updated. See the RRC, RLC, SRL, SLL, and SRA
instructions.

This bit can be set, reset or complemented by software using the SCF, RCF, and CCF
instructions.

Table 1. Interrupt levels

Interruptability Priority I1 I0

Interruptable main Lowest

Highest

1 0

Interruptable level 1 0 1

Interruptable level 2 0 0

Non interruptable 1 1

Central processing unit (CPU) RM0013

22/266 Doc ID 14400 Rev 5

Example: Addition

$B5 + $94 = "C" + $49 = $149

2.2.2 STM8 CPU register map

The CPU registers are mapped in the STM8 address space as shown inTable 2. These
registers can only be accessed by the debug module but not by memory access instructions
executed in the core.

2.3 Global configuration register (CFG_GCR)

2.3.1 Activation level

The MCU activation level is configured by programming the AL bit in the CFG_GCR register.

For information on the use of this bit refer to Section 5.4: Activation level/low power mode
control on page 44.

C 7 0

0 1 0 1 1 0 1 0 1

C 7 0

+ 0 1 0 0 1 0 1 0 0

C 7 0

= 1 0 1 0 0 1 0 0 1

Table 2. CPU register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00 A MSB - - - - - - LSB

0x01 PCE MSB -
-

- - - - LSB

0x02 PCH MSB - - - - - - LSB

0x03 PCL MSB - - - - - - LSB

0x04 XH MSB - - - - - - LSB

0x05 XL MSB - - - - - - LSB

0x06 YH MSB - - - - - - LSB

0x07 YL MSB - - - - - - LSB

0x08 SPH MSB - - - - - - LSB

0x09 SPL MSB - - - - - - LSB

0x0A CC V 0 I1 H I0 N Z C

RM0013 Central processing unit (CPU)

Doc ID 14400 Rev 5 23/266

2.3.2 SWIM disable

By default, after an MCU reset, the SWIM pin is configured to allow communication with an
external tool for debugging or Flash/EEPROM programming. This pin can be configured by
the application for use as a general purpose I/O. This is done by setting the SWD bit in the
CFG_GCR register.

2.3.3 Description of global configuration register (CFG_GCR)

Address offset: 0x00

Reset value: 0x00

2.3.4 Global configuration register map and reset values

The CFG_GCR is mapped in the STM8 address space. Refer to the corresponding
datasheets for the base address.

7 6 5 4 3 2 1 0

Reserved
AL SWD

rw rw

Bits 7:2 Reserved, must be kept cleared.

Bit 1 AL: Activation level

This bit is set and cleared by software. It configures main or interrupt-only activation.
0: Main activation level. An IRET instruction causes the context to be retrieved from the stack and
the main program continues after the WFI instruction.
1: Interrupt-only activation level. An IRET instruction causes the CPU to go back to WFI/halt mode
without restoring the context.

Bit 0 SWD: SWIM disable

0: SWIM mode enabled
1: SWIM mode disabled

When SWIM mode is enabled, the SWIM pin cannot be used as general purpose I/O.

Table 3. CFG_GCR register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00
CFG_GCR
Reset value

-
0

-
0

-
0

-
0

-
0

-
0

AL
0

SWD
0

Single wire interface module (SWIM) and debug module (DM) RM0013

24/266 Doc ID 14400 Rev 5

3 Single wire interface module (SWIM) and debug
module (DM)

3.1 Introduction
In-circuit debugging mode or in-circuit programming mode are managed through a single
wire hardware interface featuring ultrafast memory programming. Coupled with an in-circuit
debugging module, it also offers a non-intrusive emulation mode, making the in-circuit
debugger extremely powerful, close in performance to a full-featured emulator.

3.2 Main features
● Based on an asynchronous, high sink (8 mA), open-drain, bidirectional communication.

● Allows reading or writing any part of memory space.

● Access to CPU registers (A, X, Y, CC, SP). They are memory mapped for read or write
access.

● Non intrusive read/write on the fly to the RAM and peripheral registers.

● Device reset capability with status flag in the Reset status register (RST_SR).

SWIM pin can be used as a standard I/O with some restrictions if you also want to use it for
debug. The most secure way is to provide on the PCB a strap option.

Figure 3. SWIM pin connection

3.3 SWIM modes
After a power-on reset, the SWIM is reset and enters OFF mode.

1. OFF: Default state after power-on reset. The SWIM pin cannot be used by the
application as an I/O.

2. I/O: This state is entered by software writing to the SWD bit in the Global configuration
register (CFG_GCR). In this state, the SWIM pin can be used by the application as a
standard I/O pin. In case of a reset, the SWIM goes back to OFF mode.

3. SWIM: This state is entered when a specific sequence is performed on the SWIM pin.
In this state, the SWIM pin is used by the host tool to control the STM8 with 3
commands (SRST system reset, ROTF read on the fly, WOTF write on the fly).

Note: Refer to the STM8 SWIM communication Protocol and Debug Module User Manual for a
description of the SWIM and Debug module (DM) registers. Refer also to the Description of
global configuration register (CFG_GCR) on page 23.

MCU

SWIM/PA0

Jumper selection for
debug purposes

I/O for application

SWIM interface for tools

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 25/266

4 Flash program memory and data EEPROM (Flash)

4.1 Introduction
The embedded Flash program memory and data EEPROM memories are controlled by a
common set of registers. Using these registers, the application can program or erase
memory contents and set write protection. The application can also program the device
option bytes.

4.2 Glossary
● Block

A block is a set of bytes that can be programmed or erased in one single programming
operation. Operations that are performed at block level are faster than standard
programming and erasing. Refer to Table 4 for the details on block size.

● Page

A page is a set of blocks.

Dedicated option bytes can be used to configure, by increments of one page, the size
of the user boot code and data EEPROM.

4.3 Flash main features
● Low density STM8L101x EEPROM is divided into two memory arrays (see

Section 4.4: Memory organization for details on low density STM8L101x memory
mapping):

– Up to 8 Kbytes of embedded Flash program including up to 2 Kbytes of data
EEPROM. Data EEPROM and Flash program areas can be write protected
independently by using the memory access security mechanism (MASS).

– 64 option bytes (one block) of which 5 bytes are already used for the device.

● Programming modes

– Byte programming and automatic fast byte programming (without erase operation)

– Word programming

– Block programming and fast block programming mode (without erase operation)

– Interrupt generation on end of program/erase operation and on illegal program
operation.

● In-application programming (IAP) and in-circuit programming (ICP) capabilities

● Protection features

– Memory readout protection (ROP)

– Program memory write protection with memory access security system (MASS
keys).

– Data memory write protection with memory access security system (MASS keys)

– Programmable write protected user boot code area (UBC)

Flash program memory and data EEPROM (Flash) RM0013

26/266 Doc ID 14400 Rev 5

4.4 Memory organization
Low density STM8L101x Flash program memory is divided into 128 pages of 64 bytes each.
It is organized in 32-bit words (4 bytes per word).

The memory array is divided into three areas:

● The user boot code area (UBC)

● The data EEPROM (DATA)

● The main program area

The first two pages of the Flash program memory (starting from address 0x00 8000) contain
the interrupt vectors.

The devices also feature one block of option bytes (64 bytes) located in the separate
memory array.

See Figure 4 for a description of the memory organization.

Figure 4. Low density STM8L101x Flash program and data EEPROM organization

4.4.1 User boot area (UBC)

The user boot area (UBC) contains the reset and the interrupt vectors. It can be used to
store the IAP and communication routines. The UBC area has a second level of protection
to prevent unintentional erasing or modification during IAP programming. This means that it
is always write protected and the write protection cannot be unlocked using the MASS keys.

The size of the UBC area can be obtained by reading the UBC option byte.

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 27/266

The size of the UBC area can be configured in ICP mode (using the SWIM interface)
through the UBC option byte. The UBC option byte specifies the number of pages allocated
for the UBC area starting from address 0x00 8000.

The minimum meaningful size of the UBC area is of 3 pages of which 2 are used to store the
interrupt vectors.

The maximum size of the boot area is 127 pages ranging from address 0x00 8000 to
0x00 9FFF(including the interrupt vectors). In this case, no memory space is left for the
main program area.

Refer to Figure 5 for a description of the UBC area memory mapping and to the option byte
section in the datasheets for more details on the UBC option byte.

Figure 5. UBC area size definition for low density STM8L101x devices

1. UBC[7:0]= 0x00 means no memory space is allocated for the UBC area.

2. Page 127 is reserved for data EEPROM.

4.4.2 Data EEPROM (DATA)

The data EEPROM area can be used to store application data. By default, the DATA area is
write protected to prevent unintentional modification when the main program is updated in
IAP mode. The write protection can be unlocked only by using a specific MASS key
sequence (refer to Enabling write access to the DATA area).

The size of the DATA area can be configured through the DATA option byte (DATASIZE) in
ICP mode. This option byte specifies the number of pages (64 bytes) starting from address
0x00 9FFF.

The maximum size of the DATA area is of 2 Kbytes, corresponding to start address
0x00 9800 (see Figure 4).

0x00 9FFF

 0x00 9FBF

0x00 9F7F

0x 00 9F3F

0x 00 9EBF

 0x00 80FF

0x 00 80BF

0x 00 807F

Page 126

Page 126

Page 125

Page 124

Page 3

Page 2

Page 1

Page 0
0x00 8000

Interrupt vector table

64 bytes

64 bytes

64 bytes

64 bytes

64 bytes

64bytes

Interrupt vector table

3 pages to 127 pages

127 pages

User boot code area(2)

U
B

C
[7

:0
] =

0x
03

19

2
by

te
s

64 bytes Page 127

 0x00 803F

 0x00 9EFF
UBC[7:0] ≥ 0x7F

Flash program memory and data EEPROM (Flash) RM0013

28/266 Doc ID 14400 Rev 5

4.4.3 Main program area

The main program is the area which starts at the end of the UBC and ends at address
0x00 9FFF. It is used to store the application code (see Figure 4).

4.4.4 Option bytes

The option bytes are used to configure device hardware features and memory protection.
They are located in a dedicated memory array of one block.

The option bytes can be modified only in ICP/SWIM mode with OPT bit of the FLASH_CR2
register set to 1 (see Section 4.8.2: Flash control register 2 (FLASH_CR2)).

Refer to the option byte section in the datasheet for more information on option bytes, and to
the STM8 SWIM protocol and debug module user manual (UM0470) for details on how to
program them.

4.5 Memory protection

4.5.1 Readout protection

Readout protection is selected by programming the ROP option byte to 0xAA. When readout
protection is enabled, reading or modifying the Flash program memory and DATA area in
ICP mode (using the SWIM interface) is forbidden, whatever the write protection settings.
Even if no protection can be considered as totally unbreakable, the readout feature provides
a very high level of protection for a general purpose microcontroller.

The readout protection can be disabled on the program memory, UBC, and DATA areas, by
reprogramming the ROP option byte in ICP mode. In this case, the Flash program memory,
the DATA area and the option bytes are automatically erased and the device can be
reprogrammed.

Refer to Table 5: Memory access versus programming method for details on memory
access when readout protection is enabled or disabled.

4.5.2 Memory access security system (MASS)

After reset, the main program and DATA areas (when they exist) are protected against
unintentional write operations. They must be unlocked before attempting to modify their
content. This unlock mechanism is managed by the memory access security system
(MASS).

The UBC area specified in the UBC option byte is always write protected (see Section 4.4.1:
User boot area (UBC)).

Once the memory has been modified, it is recommended to enable the write protection
again to protect the memory content against corruption.

Enabling write access to the main program memory

After a device reset, it is possible to disable the main program memory write protection by
writing consecutively two values called MASS keys to the FLASH_PUKR register (see

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 29/266

Section 4.8.3: Flash program memory unprotecting key register (FLASH_PUKR)). These
programmed keys are then compared to two hardware key values:

● First hardware key: 0b0101 0110 (0x56)

● Second hardware key: 0b1010 1110 (0xAE)

The following steps are required to disable write protection of the main program area:

1. Write a first 8-bit key into the FLASH_PUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (0x56).

2. If the key available on the data bus is incorrect, the FLASH_PUKR register remains
locked until the next reset. Any new write commands sent to this address are
discarded.

3. If the first hardware key is correct when the FLASH_PUKR register is written for the
second time, the data bus content is still not latched into the register, but compared to
the second hardware key value (0xAE).

4. If the key available on the data bus is incorrect, the write protection on program
memory remains locked until the next reset. Any new write commands sent to this
address is discarded.

5. If the second hardware key is correct, the main program memory is write unprotected
and the PUL bit of the FLASH_IAPSR is set (see Section 4.8.5: Flash status register
(FLASH_IAPSR) register.

Before starting programming, the application must verify that PUL bit is effectively set. The
application can choose, at any time, to disable again write access to the Flash program
memory by clearing the PUL bit.

Enabling write access to the DATA area

After a device reset, it is possible to disable the DATA area write protection by writing
consecutively two values called MASS keys to the FLASH_DUKR register (see
Section 4.8.6: Flash register map and reset values). These programmed keys are then
compared to two hardware key values:

● First hardware key: 0b1010 1110 (0xAE)

● Second hardware key: 0b0101 0110 (0x56)

The following steps are required to disable write protection of the DATA area:

1. Write a first 8-bit key into the FLASH_DUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (0xAE).

2. If the key available on the data bus is incorrect, the application can re-enter two MASS
keys to try unprotecting the DATA area.

3. If the first hardware key is correct, the FLASH_DUKR register is programmed with the
second key. The data bus content is still not latched into the register, but compared to
the second hardware key value (0x56).

4. If the key available on the data bus is incorrect, the data EEPROM area remains write
protected until the next reset. Any new write command sent to this address is ignored.

5. If the second hardware key is correct, the DATA area is write unprotected and the DUL
bit of the FLASH_IAPSR register is set (see Section 4.8.5: Flash status register
(FLASH_IAPSR)).

Flash program memory and data EEPROM (Flash) RM0013

30/266 Doc ID 14400 Rev 5

Before starting programming, the application must verify that the DATA area is not write
protected by checking that the DUL bit is effectively set. The application can choose, at any
time, to disable again write access to the DATA area by clearing the DUL bit.

4.6 Memory programming
The main program memory, and the DATA area must be unlocked before attempting to
perform any program operation. The unlock mechanism depends on the memory area to be
programmed as described in Section 4.5.2: Memory access security system (MASS).

4.6.1 Byte programming

The main program memory and the DATA area can be programmed at byte level. To
program one byte, the application writes directly to the target address.. The application
stops for the duration of the byte program operation.

To erase a byte, simply write 0x00 at the corresponding address.

The application can read the FLASH_IAPSR register to verify that the programming or
erasing operation has been correctly executed:

● EOP flag is set after a successful programming operation

● WR_PG_DIS is set when the software has tried to write to a protected page. In this
case, the write procedure is not performed.

As soon as one of these flags are set, a Flash interrupt is generated if it has been previously
enabled by setting the IE bit of the FLASH_CR1 register.

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 31/266

Automatic fast byte programming

The programming duration can vary according to the initial content of the target address. If
the word (4 bytes) containing the byte to be programmed is not empty, the whole word is
automatically erased before the program operation. On the contrary if the word is empty, no
erase operation is performed and the programming time is shorter (see tPROG in Table
“Flash program memory” in the datasheet).

However, the programming time can be fixed by setting the FIX bit of the FLASH_CR1
register to force the program operation to systematically erase the byte whatever its content
(see Section 4.8.1: Flash control register 1 (FLASH_CR1)). The programming time is
consequently fixed and equal to the sum of the erase and write time (see tPROG in Table
“Flash program memory” in the datasheet).

Note: To write a byte fast (no erase), the whole word (4 bytes) into which it is written must be
erased beforehand. Consequently, It is not possible to do two fast writes to the same word
(without an erase before the second write): The first write will be fast but the second write to
the other byte will require an erase.

4.6.2 Word programming

A word write operation allows an entire 4-byte word to be programmed in one shot, thus
minimizing the programming time.

As for byte programming, word operation is available both for the main program memory and
data EEPROM.

To program a word, the WPRG bit in the FLASH_CR2 register must be previously set to
enable word programming mode (see Section 4.8.2: Flash control register 2
(FLASH_CR2)). Then, the 4 bytes of the word to be programmed must be loaded starting
with the first address. The programming cycle starts automatically when the 4 bytes have
been written.

As for byte operation, the EOP and the WR_PG_DIS control flags of FLASH_IAPSR,
together with the Flash interrupt, can be used to determine if the operation has been
correctly completed.

Flash program memory and data EEPROM (Flash) RM0013

32/266 Doc ID 14400 Rev 5

4.6.3 Block programming

Block program operations are much faster than byte or word program operations. In a block
program operation, a whole block is programmed or erased in a single programming cycle.
Refer to Table 4 for details on the block size according to the devices.

Block operations can be performed both to the main program memory and DATA area. They
are executed totally from RAM.

There are three possible block operations:

● Block programming, also called standard block programming: The block is
automatically erased before being programmed.

● Fast block programming: No previous erase operation is performed.

● Block erase

During block programming, interrupts are masked by hardware.

Standard block programming

A standard block program operation allows a whole block to be written in one shot. The
block is automatically erase before being programmed.

To program a whole block in standard mode, the PRG bit in the FLASH_CR2 register must
be previously set to enable standard block programming (see Section 4.8.2: Flash control
register 2 (FLASH_CR2)). Then, the block of data to be programmed must be loaded
sequentially to the destination addresses in the main program memory or DATA area. This
causes all the bytes of data to be latched. To start programming the whole block, all bytes of
data must be written. All bytes written in a programming sequence must be in the same
block. This means that they must have the same high address: Only the six least significant
bits of the address can change. When the last byte of the target block is loaded, the
programming starts automatically. It is preceded by an automatic erase operation of the
whole block.

The EOP and the WR_PG_DIS control flags of the FLASH_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 33/266

Fast block programming

Fast block programming allows programming without first erasing the memory contents.
Fast block programming is therefore twice as fast as standard programming.

This mode is intended only for programming parts that have already been erased. It is very
useful for programming blank parts with the complete application code, as the time saving is
significant.

Fast block programming is performed by using the same sequence as standard block
programming. To enable fast block programming mode, the FPRG bit of the FLASH_CR2
registers must be previously set.

The EOP and WR_PG_DIS bits of the FLASH_IAPSR register can be checked to determine
if the fast block programming operation has been correctly completed.

Caution: The data programmed in the block are not guaranteed when the block is not blank before
the fast block program operation.

Block erasing

A block erase allows a whole block to be erased.

To erase a whole block, the ERASE bit in the FLASH_CR2 register must be previously set to
enable block erasing (see Section 4.8.2: Flash control register 2 (FLASH_CR2)). The block
is then erased by writing ‘0x00 00 00 00’ to any word inside the block. The word start
address must end with ‘0’, ‘4’, ‘8’, or ‘C’.

The EOP and the WR_PG_DIS control flags of the FLASH_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

Table 4. Block size

STM8 microcontroller family Block size

Low density STM8L101x 64 bytes

Flash program memory and data EEPROM (Flash) RM0013

34/266 Doc ID 14400 Rev 5

4.7 ICP and IAP
The in-circuit programming (ICP) method is used to update the entire content of the memory,
using the SWIM interface to load the user application into the microcontroller. ICP offers
quick and efficient design iterations and eliminates unnecessary package handling or
socketing of devices. The SWIM interface (single wire interface module) uses the SWIM pin
to connect to the programming tool.

In contrast to the ICP method, in-application programming (IAP) can use any communication
interface supported by the microcontroller (I/Os, I2C, SPI, USART...) to download the data to
be programmed in the memory. IAP allows the Flash program memory content to be
reprogrammed during application execution. Nevertheless, part of the application must have
been previously programmed in the Flash program memory using ICP.

Refer to the STM8L Flash programming manual (PM0054) and STM8 SWIM protocol and
debug manual (UM0470) for more information on programming procedures.

Table 5. Memory access versus programming method(1)

Mode ROP Memory Area
Access from

core

User mode, IAP, and
bootloader

Readout protection
enabled

Interrupt vectors R/W(2)/E

User boot code area (UBC) R/E

Main program R/W/E(3)

Data EEPROM area (DATA) R/W(4)

Option bytes R

Readout protection
disabled

Interrupt vectors R/W(2)/E

User boot code area (UBC) R/E(5)

Main program R/W/E(3)

Data EEPROM area (DATA) R/W(4)

Option bytes R

SWIM active
(ICP mode)

Readout protection
enabled

Interrupt vectors P

User boot code area (UBC) P

Main program P

Data EEPROM area (DATA) P

Option bytes P/WROP
(6)

Readout protection
disabled

Interrupt vectors except for TRAP and TLI R/W(2)/E

User boot code area (UBC) R/E(5)

Main program R/W/E(3)

Data EEPROM area (DATA) R/W(4)

Option bytes R/W

1. R/W/E = Read, write, and execute
R/E = Read and execute (write operation forbidden)
R = Read (write and execute operations forbidden)
P = The area cannot be accessed (read, execute and write operations forbidden)
P/WROP = Protected, write forbidden except for ROP option byte.

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 35/266

4.8 Flash registers

4.8.1 Flash control register 1 (FLASH_CR1)

Address offset: 0x00

Reset value: 0x00

2. When no UBC area has been defined, the interrupt vectors can be modified in user/IAP mode.

3. The Flash program memory is write protected (locked) until the correct MASS key is written in the FLASH_PUKR. It is
possible to lock the memory again by resetting the PUL bit in the FLASH_IAPSR register. Unlocking can only be done once
between two resets. If wrong keys are provided, the device must be reset and new keys programmed.

4. The data memory is write protected (locked) until the correct MASS key is written in the FLASH_DUKR. It is possible to
lock the memory again by resetting the DUL bit in the FLASH_IAPSR register. If wrong keys are provided, another key
program sequence can be performed without resetting the device.

5. To program the UBC area the application must first clear the UBC option byte.

6. When ROP is removed, the whole memory is erased, including option bytes.

7 6 5 4 3 2 1 0

Reserved
Reserved Reserved IE FIX

rw rw rw rw

Bits 7:2 Reserved, forced by hardware to 0.

Bit 1 IE: Flash Interrupt enable

This bit is set and cleared by software.
0: Interrupt disabled
1: Interrupt enabled. An interrupt is generated if the EOP or WR_PG_DIS flag in the
FLASH_IAPSR register is set.

Bit 0 FIX: Fixed Byte programming time
This bit is set and cleared by software.
0: Standard programming time of (1/2 tprog) if the memory is already erased and tprog
otherwise.
1: Programming time fixed at tprog.

Flash program memory and data EEPROM (Flash) RM0013

36/266 Doc ID 14400 Rev 5

4.8.2 Flash control register 2 (FLASH_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

OPT WPRG ERASE FPRG
Reserved

PRG

rw rw rw rw rw

Bit 7 OPT: Write option bytes

This bit is set and cleared by software.
0: Write access to option bytes disabled
1: Write access to option bytes enabled

Bit 6 WPRG: Word programming

This bit is set by software and cleared by hardware when the operation is completed.
0: Word program operation disabled
1: Word program operation enabled

Bit 5 ERASE(1): Block erasing
This bit is set by software and cleared by hardware when the operation is completed.
0: Block erase operation disabled
1: Block erase operation enabled

Bit 4 FPRG(1): Fast block programming
This bit is set by software and cleared by hardware when the operation is completed.
0: Fast block program operation disabled
1: Fast block program operation enabled

Bits 3:1 Reserved

Bit 0 PRG: Standard block programming

This bit is set by software and cleared by hardware when the operation is completed.
0: Standard block programming operation disabled
1: Standard block programming operation enabled (automatically first erasing)

1. The ERASE and FPRG bits are locked when the memory is busy.

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 37/266

4.8.3 Flash program memory unprotecting key register (FLASH_PUKR)

Address offset: 0x02

Reset value: 0x00

4.8.4 Data EEPROM unprotection key register (FLASH_DUKR)

Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0

MASS_PRG KEYS

rw rw rw rw rw rw rw rw

Bits 7:0 PUK [7:0]: Main program memory unlock keys

This byte is written by software (all modes). It returns 0x00 when read.
Refer to Enabling write access to the main program memory on page 28 for the description
of main program area write unprotection mechanism.

7 6 5 4 3 2 1 0

MASS_DATA KEYS

rw rw rw rw rw rw rw rw

Bits 7:0 DUK[7:0]: Data EEPROM write unlock keys

This byte is written by software (all modes). It returns 0x00 when read.
Refer to Enabling write access to the DATA area on page 29 for the description of main
program area write unprotection mechanism.

Flash program memory and data EEPROM (Flash) RM0013

38/266 Doc ID 14400 Rev 5

4.8.5 Flash status register (FLASH_IAPSR)

Address offset: 0x04

Reset value: 0xX0 where X is undefined

7 6 5 4 3 2 1 0

Reserved
DUL EOP PUL WR_PG_DIS

rc_w0 rc_r rc_w0 rc_r

Bits 7:4 Reserved

Bit 3 DUL: Data EEPROM area unlocked flag
This bit is set by hardware and cleared by software by programming it to 0.
0: Data EEPROM area write protection enabled
1: Data EEPROM area write protection has been disabled by writing the correct MASS
keys

Bit 2 EOP: End of programming (write or erase operation) flag

This bit is set by hardware. It is cleared by software by reading the register, or when a new
write/erase operation starts.
0: No EOP event occurred
1: An EOP operation occurred. An interrupt is generated if the IE bit is set in the
FLASH_CR1 register.

Bit 1 PUL: Flash Program memory unlocked flag

This bit is set by hardware and cleared by software by programming it to 0.
0: Write protection of main Program area enabled
1: Write protection of main Program area has been disabled by writing the correct MASS
keys.

Bit 0 WR_PG_DIS: Write attempted to protected page flag

This bit is set by hardware and cleared by software by reading the register.
0: No WR_PG_DIS event occurred
1: A write attempt to a write protected page occurred. An interrupt is generated if the IE bit
is set in the FLASH_CR1 register.

RM0013 Flash program memory and data EEPROM (Flash)

Doc ID 14400 Rev 5 39/266

4.8.6 Flash register map and reset values

For details on the register boundary addresses, refer to in the general hardware register
map in the datasheets.

Table 6. Flash register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00 FLASH_CR1
-

0
-

0
-
0

-
0

-
0

-
0

IE
0

FIX
0

0x01 FLASH_CR2
OPT

0
WPRG

0
ERASE

0
FPRG

0
-
0

-
0

-
0

PRG
0

0x02 FLASH_PUKR
PUK7

0
PUK6

0
PUK5

0
PUK4

0
PUK3

0
PUK2

0
PUK1

0
PUK0

0

0x03 FLASH_DUKR
DUK7

0
DUK6

0
DUK5

0
DUK4

0
DUK3

0
DUK2

0
DUK1

0
DUK0

0

0x04 FLASH_IAPSR
-
0

-

0
-
0

-
0

DUL

0

EOP

0

PUL

0

WR_PG_DIS

0

Interrupt controller (ITC) RM0013

40/266 Doc ID 14400 Rev 5

5 Interrupt controller (ITC)

5.1 ITC introduction
● Management of hardware interrupts

– External interrupt capability on all I/O pins with dedicated interrupt vector per port
and dedicated flag per pin

– Peripheral interrupt capability

● Management of software interrupt (TRAP)

● Nested or concurrent interrupt management with flexible interrupt priority and level
management:

– Up to 4 software programmable nesting levels

– 26 interrupt vectors fixed by hardware

– 2 non maskable events: RESET, TRAP

This interrupt management is based on:

● Bit I1 and I0 of the CPU Condition Code register (CCR)

● Software priority registers (ITC_SPRx)

● Reset vector located at 0x00 8000 at the beginning of program memory. The Reset
initialization routine is programmed in ROM by STMicroelectronics.

● Fixed interrupt vector addresses located at the high addresses of the memory map
(0x00 8004 to 0x00 807C) sorted by hardware priority order.

5.2 Interrupt masking and processing flow
The interrupt masking is managed by bits I1 and I0 of the CCR register and by the
ITC_SPRx registers which set the software priority level of each interrupt vector (see
Table 7). The processing flow is shown in Figure 6.

When an interrupt request has to be serviced:

1. Normal processing is suspended at the end of the current instruction execution.

2. The PC, X,Y, A and CCR registers are saved onto the stack.

3. Bits I1 and I0 of CCR register are set according to the values in the ITC_SPRx registers
corresponding to the serviced interrupt vector.

4. The PC is then loaded with the interrupt vector of the interrupt to service and the first
instruction of the interrupt service routine is fetched (refer to the datasheet interrupt
mapping table for details on vector addresses).

The interrupt service routine should end with the IRET instruction which causes the content
of the saved registers to be recovered from the stack. As a consequence of the IRET
instruction, bits I1 and I0 are restored from the stack and the program execution resumes.

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 41/266

Figure 6. Interrupt processing flowchart

5.2.1 Servicing pending interrupts

Several interrupts can be pending at the same time. The interrupt to be taken into account is
determined by the following two-step process:

1. The highest software priority interrupt is serviced.

2. If several interrupts have the same software priority then the interrupt with the highest
hardware priority is serviced first.

When an interrupt request is not serviced immediately, it is latched and then processed
when its software priority combined with the hardware priority becomes the highest one.

Note: 1 The hardware priority is exclusive while the software one is not. This allows the previous
process to succeed with only one interrupt.

2 RESET and TRAP are considered as having the highest software priority in the decision
process.

See Figure 7 for a description of pending interrupt servicing process.

Table 7. Software priority levels

Software priority Level I1 I0

Level 0 (main)
Low

High

1 0

Level 1 0 1

Level 2 0 0

Level 3 (= software priority disabled) 1 1

“IRET”

RESTORE PC, X, Y, A, CCR
STACK PC, X, Y, A, CCR

LOAD I1:0 FROM INTERRUPT SW REG.

FETCH NEXT

RESET TRAP
PENDING

INSTRUCTION

I1:0

FROM STACK

LOAD PC FROM INTERRUPT VECTOR

Y

N

Y

N

Y

NInterrupt has the same or a
lower software priority

THE INTERRUPT
STAYS PENDING

than current one

In
te

rr
up

th
as

a
hi

gh
er

so
ftw

ar
e

pr
io

rit
y

th
an

cu
rr

en
to

ne

EXECUTE
INSTRUCTION

INTERRUPT

Interrupt controller (ITC) RM0013

42/266 Doc ID 14400 Rev 5

Figure 7. Priority decision process

5.2.2 Interrupt sources

Two interrupt source types are managed by the STM8 interrupt controller:

● Non-maskable interrupts: RESET and TRAP

● Maskable interrupts: external interrupts or interrupts issued by internal peripherals

Non-maskable interrupt sources

Non-maskable interrupt sources are processed regardless of the state of bits I1 and I0 of
the CCR register (see Figure 6). PC, X, Y, A and CCR registers are stacked only when a
TRAP interrupt occurs. The corresponding vector is then loaded in the PC register and bits
I1 and I0 of the CCR register are set to disable interrupts (level 3).

● TRAP (non-maskable software interrupt)

This software interrupt source is serviced when the TRAP instruction is executed. It is
serviced according to the flowchart shown in Figure 6.

A TRAP interrupt does not allow the processor to exit from Halt mode.

● RESET

The RESET interrupt source has the highest STM8 software and hardware priorities.
This means that all the interrupts are disabled at the beginning of the reset routine.
They must be re-enabled by the RIM instruction (see Table 10: Dedicated interrupt
instruction set).

A RESET interrupt allows the processor to exit from Halt mode.

See RESET chapter for more details on RESET interrupt management.

PENDING

SOFTWARE Different

INTERRUPTS

Same

HIGHEST HARDWARE

 PRIORITY SERVICED

PRIORITY

HIGHEST SOFTWARE

 PRIORITY SERVICED

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 43/266

Maskable interrupt sources

Maskable interrupt vector sources are serviced if the corresponding interrupt is enabled and
if its own interrupt software priority in ITC_SPRx registers is higher than the one currently
being serviced (I1 and I0 in CCR register). If one of these two conditions is not met, the
interrupt is latched and remains pending.

● External interrupts

External interrupts can be used to wake up the MCU from Halt mode. The device
sensitivity to external interrupts can be selected by software through the External
Interrupt Control registers (EXTI_CRx).

When several input pins connected to the same interrupt line are selected
simultaneously, they are logically ORed.

When external level-triggered interrupts are latched, if the given level is still present at
the end of the interrupt routine, the interrupt remains activated except if it has been
inactivated in the routine.

● Peripheral interrupts

A few peripheral interrupts cause the MCU to wake up from Halt mode. See the
interrupt vector table in the datasheet.

A peripheral interrupt occurs when a specific flag is set in the peripheral status register
and the corresponding enable bit is set in the peripheral control register.

The standard sequence for clearing a peripheral interrupt performs an access to the
status register followed by a read or write to an associated register. The clearing
sequence resets the internal latch. A pending interrupt (that is an interrupt waiting to be
serviced) is therefore lost when the clear sequence is executed.

5.3 Interrupts and low power modes
All interrupts allow the processor to exit from Wait mode.

Only a Reset or an event allow the processor to exit from Low power wait mode. This mode
is entered by executing a WFE instruction in Low power run mode. The wakeup by an event
makes the system go back to Low power run mode (refer to Section 9: Power management
for more details).

Only external and other specific interrupts allow the processor to exit from halt and Active-
halt mode (see wakeup from halt and wakeup from Active-halt in).

When several pending interrupts are present while waking up from Halt mode, the first
interrupt serviced can only be an interrupt with exit-from-Halt mode capability. It is selected
through the decision process shown in Figure 7. If the highest priority pending interrupt
cannot wake up the device from Halt mode, it will be serviced next.

If any internal or external interrupt (from a timer for example) occurs while the HALT
instruction is executing, the HALT instruction is completed but the interrupt invokes the
wakeup process immediately after the HALT instruction has finished executing. In this case
the MCU is actually waking up from Halt mode to Run mode, with the corresponding delay of
tWUH as specified in the datasheet.

Interrupt controller (ITC) RM0013

44/266 Doc ID 14400 Rev 5

5.4 Activation level/low power mode control
The MCU activation level is configured by programming the AL bit in the CFG_GCR register
(see global configuration register (CFG_GCR)).

This bit is used to control the low power modes of the MCU. In very low power applications,
the MCU spends most of the time in WFI/Halt mode and is woken up (through interrupts) at
specific moments in order to execute a specific task. Some of these recurring tasks are
short enough to be treated directly in an ISR (interrupt service routine), rather than going
back to the main program. To cover this case, you can set the AL bit before entering low
power (by executing WFI/HALT instruction), then the interrupt routine returns directly to low
power mode. The run time/ISR execution is reduced due to the fact that the register context
is saved only on the first interrupt.

As a consequence, all the operations can be executed in ISR in very simple applications. In
more complex ones, an interrupt routine may relaunch the main program by simply resetting
the AL bit.

For example, an application may need to be woken up by the auto-wakeup unit (AWU) every
50 ms in order to check the status of some pins/sensors/push-buttons. Most of the time, as
these pins are not active, the MCU can return to low power mode without running the main
program. If one of these pins is active, the ISR decides to launch the main program by
resetting the AL bit.

5.5 Concurrent and nested interrupt management
STM8 devices feature two interrupt management modes:

● Concurrent mode

● Nested mode

5.5.1 Concurrent interrupt management mode

In this mode, all interrupts are interrupt priority level 3 so that none of them can be
interrupted, except by a RESET, or TRAP.

The hardware priority is given in the following order from the lowest to the highest priority,
that is: MAIN, IT4, IT3, IT2, IT1, IT0, TRAP (same priority), and RESET.

Figure 8 shows an example of concurrent interrupt management mode.

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 45/266

Figure 8. Concurrent interrupt management

5.5.2 Nested interrupt management mode

In this mode, interrupts are allowed during interrupt routines. This mode is activated as soon
as an interrupt priority level lower than level 3 is set.

The hardware priority is given in the following order from the lowest to the highest priority,
that is: MAIN, IT4, IT3, IT2, IT1, IT0, and TRAP.

The software priority is configured for each interrupt vector by setting the corresponding
I1_x and I0_x bits of the ITC_SPRx register. I1_x and I0_x bits have the same meaning as
I1 and I0 bits of the CCR register (see Table 8).

Level 0 can not be programmed (I1_x=1, I0_x=0). In this case, the previously stored value is
kept. For example: if previous value is CFh, and programmed value equals 64h, the result is
44h.

The RESET and TRAP vectors have no software priorities. When one is serviced, bits I1
and I0 of the CCR register are both set.

Caution: If bits I1_x and I0_x are modified while the interrupt x is executed, the device operates as
follows: if the interrupt x is still pending (new interrupt or flag not cleared) and the new
software priority is higher than the previous one, then the interrupt x is re-entered.
Otherwise, the software priority remains unchanged till the next interrupt request (after the
IRET of the interrupt x).

During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI
instructions change the current software priority till the next IRET instruction or one of the
previously mentioned instructions is issued. See Section 5.7 for the list of dedicated
interrupt instructions.

Figure 9 shows an example of nested interrupt management mode.

Warning: A stack overflow may occur without notifying the software of
the failure.

MAIN

IT4

IT2

IT1

TRAP

IT1

MAIN

IT0

I1
H

A
R

D
W

A
R

E
 P

R
IO

R
IT

Y
SOFTWARE

3

3

3

3

3

3/0

3

1 1

1 1

1 1

1 1

1 1

11 / 10

1 1

RIM

IT
2

IT
1

IT
4

T
R

A
P

IT
3

IT
0

IT3

I0

10

PRIORITY
LEVEL

U
S

E
D

S
T

A
C

K
=

10
B

Y
T

E
S

Interrupt controller (ITC) RM0013

46/266 Doc ID 14400 Rev 5

Figure 9. Nested interrupt management

5.6 External interrupts
Ten interrupt vectors are dedicated to external Interrupt events:

● EXTIB - 8 lines on Port B: PB[7:0]

● EXTID - 8 lines on Port D: PD[7:0]

● EXTI0 - 4 lines on Port A/B/C/D, bit 0: Px[0]

● EXTI1 - 4 lines on Port A/B/C/D, bit 1: Px[1]

● EXTI2 - 4 lines on Port A/B/C/D, bit 2: Px[2]

● EXTI3 - 4 lines on Port A/B/C/D, bit 3: Px[3]

● EXTI4 - 4 lines on Port A/B/C/D, bit 4: Px[4]

● EXTI5 - 4 lines on Port A/B/C/D, bit 5: Px[5]

● EXTI6 - 4 lines on Port A/B/C/D, bit 6: Px[6]

● EXTI7 - 2 lines on Port B/D, bit 7: Px[7]

To generate an interrupt, the corresponding GPIO port must be configured in input mode
with interrupts enabled. Refer to the register description in the GPIO chapter for details.

When an external interrupt occurs, the corresponding bit is set in the EXTI_SRx status
register. This indicates a pending interrupt. Clearing this bit, writing a 1 in it, clears the
corresponding pending external interrupt.

Table 8. Vector address map versus software priority bits

Vector address ITC_SPRx bits

0x00 8008h I1_0 and I0_0 bits

0x00 800Ch I1_1 and I0_1 bits

... ...

0x00 807Ch I1_29 and I0_29 bits

MAIN

IT2

TRAP

MAIN

IT0

IT
2

IT
1

IT
4

T
R

A
P

IT
3

IT
0

H
A

R
D

W
A

R
E

 P
R

IO
R

IT
Y

3

2

1

3

3

3/0

3

1 1

0 0

0 1

1 1

1 1

1 1

RIM

IT1

IT4 IT4

IT1

IT2

IT3

I1 I0

11 / 10 10

SOFTWARE
PRIORITY
LEVEL

U
S

E
D

S
T

A
C

K
=

20
B

Y
T

E
S

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 47/266

The interrupt sensitivity must be configured in the external interrupt control register 1
(EXTI_CR1), external interrupt control register 2 (EXTI_CR2), and external interrupt control
register 3 (EXTI_CR3) (see Section 5.9.3, Section 5.9.4 and Section 5.9.5).

5.7 Interrupt instructions
Table 10 shows the interrupt instructions.

5.8 Interrupt mapping
Refer to the corresponding device datasheet for the table of interrupt vector addresses.

Table 9. External interrupt sensitivity

GPIO port Interrupt sensitivity Configuration register

EXTI0 to EXTI3 on port A, B, C
and D Falling edge and low level

Rising edge only
Falling edge only

Rising and falling edge

EXTI_CR1

EXTI4 to EXTI7 of port A, B, C
and D

EXTI_CR2

EXTIB and EXTID EXTI_CR3

Table 10. Dedicated interrupt instruction set

Instruction New description Function/example I1 H I0 N Z C

HALT Entering Halt mode 1 0

IRET Interrupt routine return Pop CCR, A, X, Y, PC I1 H I0 N Z C

JRM Jump if I1:0=11 (level 3) I1:0=11 ?

JRNM Jump if I1:0<>11 I1:0<>11 ?

POP CC Pop CCR from the stack Mem => CCR I1 H I0 N Z C

RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CCR 1 0

SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CCR 1 1

TRAP Software trap Software NMI 1 1

WFI Wait for interrupt 1 0

WFE Wait for event 1 0

Interrupt controller (ITC) RM0013

48/266 Doc ID 14400 Rev 5

5.9 ITC and EXTI registers

5.9.1 CPU condition code register interrupt bits (CCR)

Address: refer to the general hardware register map table in the datasheet.

Reset value: 0x28

7 6 5 4 3 2 1 0

V - I1 H I0 N Z C

r r rw r rw r r r

Bits 5, 3(1) I[1:0]: Software interrupt priority bits(2)

These two bits indicate the software priority of the current interrupt request. When an
interrupt request occurs, the software priority of the corresponding vector is loaded
automatically from the software priority registers (ITC_SPRx).
The I[1:0] bits can be also set/cleared by software using the RIM, SIM, HALT, WFI, IRET or
PUSH/POP instructions (see Figure 9: Nested interrupt management).

I1 I0 Priority Level

1 0 Level 0 (main)
Low

High

0 1 Level 1

0 0 Level 2

1 1 Level 3 (= software priority disabled*)

1. Refer to the central processing section for details on the other CCR bits.

2. TRAP and RESET events can interrupt a level-3 program.

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 49/266

5.9.2 Software priority register x (ITC_SPRx)

Address offset: 0x00 to 0x07

Reset value: 0xFF

7 6 5 4 3 2 1 0

ITC_SPR1 Reserved Reserved VECT1SPR[1:0] Reserved

ITC_SPR2 VECT7SPR[1:0] VECT6SPR[1:0] Reserved VECT4SPR[1:0]

ITC_SPR3 VECT11SPR[1:0] VECT10SPR[1:0] VECT9SPR[1:0] VECT8SPR[1:0]

ITC_SPR4 VECT15SPR[1:0] VECT14SPR[1:0] VECT13SPR[1:0] VECT12SPR[1:0]

ITC_SPR5 VECT19SPR[1:0] VECT18SPR[1:0] Reserved Reserved

ITC_SPR6 Reserved VECT22SPR[1:0] VECT21SPR[1:0] VECT20SPR[1:0]

ITC_SPR7 VECT27SPR[1:0] VECT26SPR[1:0] VECT25SPR[1:0] Reserved

ITC_SPR8 Reserved VECT29SPR[1:0] VECT28SPR[1:0]

rw rw rw rw rw rw rw rw

Bits 7:0 VECTxSPR[1:0]: Vector x software priority bits
These eight read/write registers (ITC_SPR1 to ITC_SPR8) are written by software to
define the software priority of each interrupt vector.
The list of vectors is given in Table 8: Vector address map versus software priority bits.
Refer to Section 5.9.1: CPU condition code register interrupt bits (CCR) for the values to be
programmed for each priority.
Reserved
ITC_SPR8 bits 7:4 are forced to 1 by hardware.

Note: It is forbidden to write 10 (priority level 0). If 10 is written, the previous value is kept
and the interrupt priority remains unchanged.

Interrupt controller (ITC) RM0013

50/266 Doc ID 14400 Rev 5

5.9.3 External interrupt control register 1 (EXTI_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

P3IS[1:0] P2IS[1:0] P1IS[1:0] P0IS[1:0]

rw rw rw rw rw rw rw rw

Bits 7:6 P3IS[1:0]: Portx bit 3 external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of bit 3 of Port A, B, C and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 5:4 P2IS[1:0]: Portx bit 2 external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of bit 2 of Port A, B, C and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 3:2 P1IS[1:0]: Portx bit 1 external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of bit 1 of Port A, B, C and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 1:0 P0IS[1:0]: Portx bit 0 external interrupt sensitivity bits
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of bit 0 of Port A, B, C and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 51/266

5.9.4 External interrupt control register 2 (EXTI_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

P7IS[1:0] P6IS[1:0] P5IS[1:0] P4IS[1:0]

rw rw rw rw rw rw rw rw

Bits 7:6 P7IS[1:0]: Portx bit 7 external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of the bit 7 of Port B and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 5:4 P6IS[1:0]: Portx bit 6 external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of the bit 6 of Port A, B, C and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 3:2 P5IS[1:0]: Portx bit 5 external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of the bit 5 of Port A, B, C and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 1:0 P4IS[1:0]: Portx bit 4 external interrupt sensitivity bits
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of the bit 4 of Port A, B, C and/or D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Interrupt controller (ITC) RM0013

52/266 Doc ID 14400 Rev 5

5.9.5 External interrupt control register 3 (EXTI_CR3)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved Reserved PDIS[1:0] PBIS[1:0]

Res. Res. rw rw rw rw

Bits 7:4 Reserved, must be kept cleared.

Bits 3:2 PDIS[1:0]: Port D external interrupt sensitivity bits
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of the Port D external interrupts, when EXTID for Port D[3:0]
and/or Port D[7:4] is enabled.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 1:0 PBIS[1:0]: Port B external interrupt sensitivity bits
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of the Port B external interrupts, when EXTIB for Port B[3:0]
and/or PortB[7:4] is enabled.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 53/266

5.9.6 External interrupt status register 1 (EXTI_SR1)

Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0

P7F P6F P5F P4F P3F P2F P1F P0F

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 7:0 PxF: Port A/B/C/D bit x external interrupt flag

These bits are set by hardware when an interrupt event occurs on the corresponding
pin.They are cleared by writing a ‘1’ by software.
0: No interrupt
1: External interrupt pending

Interrupt controller (ITC) RM0013

54/266 Doc ID 14400 Rev 5

5.9.7 External interrupt status register 2 (EXTI_SR2)

Address offset: 0x04

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved PDF PBF

Res. Res. Res. Res. Res. Res. rc_w1 rc_w1

Bits 7:2 Reserved

Bit 1 PDF: Port D external interrupt flag
This bit is set by hardware when an interrupt event occurs on the corresponding pin. It is
cleared by writing a ‘1’ by software.

0: No interrupt
1: External interrupt pending

Bit 0 PBF: Port B external interrupt flag

This bit is set by hardware when an interrupt event occurs on the corresponding pin.It is
cleared by writing a ‘1’ by software.

0: No interrupt
1: External interrupt pending

RM0013 Interrupt controller (ITC)

Doc ID 14400 Rev 5 55/266

5.9.8 External interrupt port select register (EXTI_CONF)

Address offset: 0x05

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved PDHIS PDLIS PBHIS PBLIS

Res. Res. Res. Res. rw rw rw rw

Bits 7:4 Reserved

Bit 3 PDHIS: Port D[7:4] external interrupt select
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
It selects pins PD[7:4] for EXTID interrupt.
0: PD[7:4] are used for EXTI7-EXTI4 interrupt generation
1: PD[7:4] are used for EXTID interrupt generation

Bit 2 PDLIS: Port D[3:0] external interrupt select

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
It selects pins PD[3:0] for EXTID interrupt.
0: PD[3:0] are used for EXTI3-EXTI0 interrupt generation
1: PD[3:0] are used for EXTID interrupt generation

Bit 1 PBHIS: Port B[7:4] external interrupt select
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
It selects pins PB[7:4] for EXTIB interrupt.
0: PB[7:4] are used for EXTI7-EXTI4 interrupt generation
1: PB[7:4] are used for EXTIB interrupt generation

Bit 0 PBLIS: Port B[3:0] external interrupt select

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
It selects pins PB[3:0] for EXTIB interrupt.
0: PB[3:0] are used for EXTI3-EXTI0 interrupt generation
1: PB[3:0] are used for EXTIB interrupt generation

Interrupt controller (ITC) RM0013

56/266 Doc ID 14400 Rev 5

5.9.9 ITC and EXTI register map and reset values

Table 11. ITC and EXTI register map

Add.
offset

Register
name

7 6 5 4 3 2 1 0

ITC-SPR block(1)

0x00 ITC_SPR1
Reset value

Reserved
1

Reserved
1

Reserved
1

Reserved
1

VECT1SPR1
1

VECT1SPR0
1

Reserved
1

Reserved
1

0x01 ITC_SPR2
Reset value

VECT7SPR1
1

VECT7SPR0
1

VECT6SPR1
1

VECT6SPR0
1

Reserved
1

Reserved
1

VECT4SPR1
1

VECT4SPR0
1

0x02 ITC_SPR3
Reset value

VECT11SPR
1
1

VECT11SPR
0
1

VECT10SPR
1
1

VECT10SPR
0
1

VECT9SPR1
1

VECT9SPR0
1

VECT8SPR1
1

VECT8SPR0
1

0x03 ITC_SPR4
Reset value

VECT15SPR
1
1

VECT15SPR
0
1

VECT14SPR
1
1

VECT14SPR
0
1

VECT13SPR
1
1

VECT13SPR
0
1

VECT12SPR
1
1

VECT12SPR
0
1

0x04 ITC_SPR5
Reset value

VECT19SPR
1
1

VECT19SPR
0
1

VECT18SPR
1
1

VECT18SPR
0
1

Reserved
1

Reserved
1

Reserved
1

Reserved
1

0x05 ITC_SPR6
Reset value

Reserved
1

Reserved
1

VECT22SPR
1
1

VECT22SPR
0
1

VECT21SPR
1
1

VECT21SPR
0
1

VECT20SPR
1
1

VECT20SPR
0
1

0x06 ITC_SPR7
Reset value

VECT27SPR
1
1

VECT27SPR
0
1

VECT26SPR
1
1

VECT26SPR
0
1

VECT25SPR
1
1

VECT25SPR
0
1

Reserved
1

Reserved
1

0x07 ITC_SPR8
Reset value

-
1

-
1

-
1

-
1

VECT29SPR
1
1

VECT29SPR
0
1

VECT28SPR
1
1

VECT28SPR
0
1

ITC-EXTI block(2)

0x00 EXTI_CR1 P3IS1
0

P3IS0
0

P2IS1
0

P2IS0
0

P1IS1
0

P1IS0
0

P0IS1
0

P0IS0
0

0x01 EXTI_CR2 P7IS1
0

P7IS0
0

P6IS1
0

P6IS0
0

P5IS1
0

P5IS0
0

P4IS1
0

P4IS0
0

0x02 EXTI_CR3 -
0

-
0

-
0

-
0

PDIS1
0

PDIS0
0

PBIS1
0

PBIS0
0

0x03 EXTI_SR1 P7F
0

P6F
0

P5F
0

P4F
0

P3F
0

P2F
0

P1F
0

P0F
0

0x04 EXTI_SR2 -
0

-
0

-
0

-
0

-
0

-
0

PDF
0

PBF
0

0x05 EXTI_CONF -
0

-
0

-
0

-
0

PDHIS
0

PDLIS
0

PBHIS
0

PBLIS
0

1. The address offsets are expressed for the ITC-SPR block base address (see Table CPU/SWIM/debug module/interrupt
controller registers in the datasheet).

2. The address offsets are expressed for the ITC-EXTI block base address (see Table General hardware register map in the
datasheet).

RM0013 Power supply

Doc ID 14400 Rev 5 57/266

6 Power supply

The MCU has one power supply, VDD/VSS (1.65 to 3.6 V), to supply both the I/Os and the
internal voltage regulator. The voltage regulator has 2 modes: Main voltage regulator mode
(MVR) and Low Power voltage regulator mode (LPVR).

When entering Halt or Active-halt modes (described in Section 9.4.2: Halt mode and
Section 9.4.3: Active-halt mode), the system automatically switches from the MVR to the
LPVR in order to reduce current consumption.

The power-on reset (POR) guarantees a safe reset when the MCU is powered on.

Refer to the electrical characteristics section in the datasheet for details on the operating
range.

Figure 10. Power supply overview

Note: The different power modes are described in Section 9: Power management on page 68.

Low Power voltage regulator

VDD Main voltage regulator

I/Os

1.8 V domain1.65 V-3.6 V

RAM
Flash

STM8 MCU Core

CPU
(MVR)

(LPVR)

Reset (RST) and voltage detection RM0013

58/266 Doc ID 14400 Rev 5

7 Reset (RST) and voltage detection

There are five reset sources:

● External reset through the NRST pin (this pin can also be configured as general
purpose output)

● Power-on reset (POR)

● Independent watchdog reset (IWDG)

● SWIM reset

● Illegal opcode reset

These sources act on the RESET pin. The RESET service routine vector is fixed at address
0x8000 in the memory map.

Figure 11. Reset circuit

7.1 “Reset state” and “under reset” definitions
When a reset occurs, there is a reset phase from the external pin pull-down to the internal
reset signal release. During this phase, the microcontroller sets some hardware
configurations before going to the reset vector.

At the end of this phase, most of the registers are configured with their “reset state” values.
During the reset phase, i.e. “under reset”, some pin configurations may be different from
their “reset state” configuration.

7.2 External reset (NRST pin)

7.2.1 Asynchronous external reset description

The NRST pin is both an input and an open-drain output with integrated RPU weak pull-up
resistor.

A minimum of 300 ns low pulse on the NRST pin is needed to generate an external reset.
The reset detection is asynchronous and therefore the MCU can enter reset even in Halt
mode.

The NRST pin also acts as an open-drain output for resetting external devices.

NRST

RPU

VDD

PULSE
GENERATOR

SWIM RESET

EXTERNAL
RESET

(min 20 µs)

SYSTEM NRESET

ILLEGAL OPCODE RESET

IWDG RESET

POR RESET

Filter
(typ 40 kΩ)

RM0013 Reset (RST) and voltage detection

Doc ID 14400 Rev 5 59/266

An internal temporization maintains a pulse of at least 20 µs for every internal reset source.
An additional internal weak pull-up ensures a high level on the reset pin when the reset is
not forced.

Refer to Figure 11 and see electrical parameters section in the datasheet for more details.

7.2.2 Configuring NRST/PA1 pin as general purpose output

To optimize the number of available pins, the NRST pin (external reset) can be configured
as a general purpose push-pull output (PA1).

For security, this configuration can be performed once only after reset, by writing a specified
key (D0h) to the Reset pin configuration register (RST_CR).

When the PA1 pin is configured as a general purpose output the MCU can be reset only by
a power-on reset (POR) or other internal reset source.

7.3 Internal reset
For internal reset sources, the RESET pin is kept low during the delay phase generated by
the pulse generator.

Each internal reset source is linked to a specific flag bit in the Reset status register
(RST_SR). These flags are set respectively at reset state depending on the given reset
source. So they are used to identify the last reset source. They are cleared by software
writing the logic value “1”.

Note: All flags besides the POR flag are reset at POR.

7.3.1 Power-on reset (POR)

During power-on, the POR keeps the device under reset until the supply voltage (VDD)
reaches a specified voltage and then holds reset active even longer for a specified time in
order to assure that VDD has reached the minimum operating voltage before releasing the
RESET pin. See electrical parameters section in the datasheet for more details.

7.3.2 Independent watchdog reset

See the independent watchdog section for details.

A reset can be triggered by the application software using the independent watchdog.

7.3.3 SWIM reset

An external device connected to the SWIM interface can request the SWIM block to
generate an MCU reset.

7.3.4 Illegal opcode reset

In order to provide enhanced robustness to the device against unexpected behavior, a
system of illegal opcode detection is implemented. If a code to be executed does not
correspond to any opcode or prebyte value, a reset is generated. This, combined with the
watchdog, allows recovery from an unexpected fault or interference.

Reset (RST) and voltage detection RM0013

60/266 Doc ID 14400 Rev 5

7.4 RST registers

7.4.1 Reset pin configuration register (RST_CR)

Address offset: 0x00

Reset value: 0x00

7.4.2 Reset status register (RST_SR)

Address offset: 0x01

Reset value after power-on reset: 0x01

7 6 5 4 3 2 1 0

RSTPIN_KEY

rwo rwo rwo rwo rwo rwo rwo rwo

Bits 7:0 RSTPIN_KEY[7:0]: Reset pin configuration key

0x00: NRST/PA1 configured as reset pin (default reset value)
0xD0: NRST/PA1 configured as general purpose output

These bits are write once only. They can also be read at any time.
Note: Writing any value beside D0h is equivalent to writing 00h.

7 6 5 4 3 2 1 0

Reserved SWIMF ILLOPF IWDGF PORF

rc_w1 rc_w1 rc_w1 rc_w1

Bits 7:4 Reserved, must be kept cleared.

Bit 3 SWIMF: SWIM reset flag

0: No SWIM reset occurred
1: A SWIM reset occurred

This bit is set by hardware and cleared by software writing “1”.

Bit 2 ILLOPF: Illegal opcode reset flag

0: No ILLOP reset occurred
1: An ILLOP reset occurred

This bit is set by hardware and cleared by software writing “1”.

Bit 1 IWDGF: Independent Watchdog reset flag
0: No IWDG reset occurred
1: An IWDG reset occurred

This bit is set by hardware and cleared by software writing “1”.

Bit 0 PORF: Power-on reset (POR) flag

0: No POR occurred
1: A POR occurred

This bit is set by hardware and cleared by software writing “1”.

RM0013 Reset (RST) and voltage detection

Doc ID 14400 Rev 5 61/266

7.5 RST register map and reset values

Table 12. RST register map and reset values

Address
offset(1) Register name 7 6 5 4 3 2 1 0

0x00
RST_CR

Reset value

RSTPIN
_KEY7

0

RSTPIN
_KEY6

0

RSTPIN
_KEY5

0

RSTPIN
_KEY4

0

 RSTPIN
_KEY3

0

RSTPIN
_KEY2

0

RSTPIN
_KEY1

0

RSTPIN
_KEY0

0

0x01
RST_SR

Reset value
-
0

-
0

-
0

-
0

SWIMF
0

ILLOPF
0

IWDGF
0

PORF

1

1. Please refer to the “general hardware register map” table in the datasheet for details on register addresses.

Clock control (CLK) RM0013

62/266 Doc ID 14400 Rev 5

8 Clock control (CLK)

The clock controller is designed to be very robust and at the same time easy to use. Its
purpose is to obtain the best performance in the application while at the same time get the
full benefit of all the microcontroller power saving capabilities.

You can manage the clock distribution to the CPU and to the various peripherals, in order to
optimize the power consumption.

A safe and glitch-free switch mechanism allows you to switch the master clock division factor
on the fly, by means of clock prescaler.

Figure 12. Clock structure

HSI RC
16 MHz

LSI RC
38 kHz

/1
/2
/4
/8

fMASTER

fLSI

HSIDIV[1:0]

to Timers

Peripheral clock

& Independent watchdog (IWDG)

USART
I2C
SPI
AWU/BEEP

LSI = Low Speed Internal clock signal

HSI = High Speed Internal clock signal

Legend:

CCO
fMASTER
fMASTER/2
fMASTER/4
fMASTER/16

Configurable clock output

CCOSEL[1:0]

Enable (8 bits)to Auto wakeup unit (AWU),

fHSI
to CPU

Divider fHSI/2
to SWIM

Single wire interface module (SWIM)

/2

Beeper (BEEP),

RM0013 Clock control (CLK)

Doc ID 14400 Rev 5 63/266

8.1 Master clock (HSI clock)
The master clock of the system is a 16-MHz high-speed internal RC oscillator (HSI RC),
followed by a programmable prescaler.

The fHSI clock signal generated from the internal 16-MHz RC oscillator can then be divided
by a programmable divider (factor 1 to 8) to obtain fMASTER. This is programmed in the Clock
divider register (CLK_CKDIVR).

Note: At startup the master clock source is automatically selected as HSI RC clock output divided
by 8 (HSI/8).

The HSI RC oscillator has the advantage of providing a 16-MHz master clock source with
50% duty cycle at low cost (no external components) and with a fast startup time.

The clock controller configures the master clock source as HSI RC clock output divided by 8
(fHSI/8), which helps ensure a safe startup in case of poor VDD conditions.

8.1.1 Peripheral clock gating (PCG)

Gating the clock to unused peripherals helps reduce power consumption. Peripheral clock
gating (PCG) mode selectively enables or disables the fMASTER clock connection to the
following peripherals at any time in run or slow mode:

● TIM2

● TIM3

● TIM4

● I2C

● SPI

● USART

● AWU/BEEP (except LSI clock controlled by AWUEN bit in the Control/status register
(AWU_CSR) and by BEEPEN bit in the Beep control/status register (BEEP_CSR)) .

After a device reset, all peripheral clocks are disabled. You can enable the clock to any
peripheral by setting the corresponding PCKEN bit in the Peripheral clock gating register
(CLK_PCKENR) . To enable a peripheral, first enable the corresponding PCKEN bit in the
CLK_PCKENR registers and then set the peripheral enable bit in the peripheral control
registers.

To disable properly the peripheral, first disable the appropriate bit in the peripheral control
registers and then stop the corresponding clock.

The AWU counter is fed by the low speed internal specific clock (fLSI) different from fMASTER,
so that it continues to run even if the clock gating to this peripheral register is asserted. The
same is true for the beeper.

Clock control (CLK) RM0013

64/266 Doc ID 14400 Rev 5

8.2 LSI clock
The LSI RC oscillator generates the fLSI clock. This clock is a 38-kHz Low Speed Internal
RC oscillator (LSI RC). It is used by the independent watchdog (IWDG), Auto-Wakeup unit
(AWU) and beeper (BEEP). The LSI is active in Active-halt mode and can be kept in run
mode.

8.3 Configurable clock-output capability (CCO)
The configurable clock output (CCO) capability outputs a clock on the external CCO pin.
The master clock is used to drive the clock output with a programmable prescaler which can
divide the clock frequency by a factor of 1, 2, 4 or 16.

The selection is controlled by the CCOSEL[1:0] bits in the Configurable clock output register
(CLK_CCOR).

The sequence to output the targeted clock starts with CCOEN=1 in Configurable clock
output register (CLK_CCOR). When CCOEN=1, the CCOSEL[1:0] bits are write protected.

To disable the clock output the user has to clear the CCOEN bit.

RM0013 Clock control (CLK)

Doc ID 14400 Rev 5 65/266

8.4 CLK registers

8.4.1 Clock divider register (CLK_CKDIVR)

Address offset: 0x00

Reset value: 0x03

8.4.2 Peripheral clock gating register (CLK_PCKENR)

Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved HSIDIV[1:0]

rw rw rw rw rw

Bits 7:2 Reserved, must be kept cleared.

Bits 1:0 HSIDIV[1:0]: High speed internal clock prescaler
00: fMASTER= fHSI RC output
01: fMASTER= fHSI RC output/2
10: fMASTER= fHSI RC output/4
11: fMASTER= fHSI RC output/8

These bits are written by software to define the HSIDIV prescaling factor.

7 6 5 4 3 2 1 0

PCKEN[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 PCKEN[7:0]: Peripheral clock enable
0: fMASTER to peripheral disabled
1: fMASTER to peripheral enabled

These bits are written by software to enable or disable the fMASTER clock to the corresponding
peripheral. See Table 13

Table 13. Peripheral clock gating bits

Control bit Peripheral

PCKEN7 Reserved

PCKEN6

AWU+BEEP (except LSI clock controlled by
AWUEN bit in the Control/status register

(AWU_CSR) and BEEPEN bit in the Beep
control/status register (BEEP_CSR))

PCKEN5 USART

PCKEN4 SPI

PCKEN3 I2C

PCKEN2 TIM4

PCKEN1 TIM3

PCKEN0 TIM2

Clock control (CLK) RM0013

66/266 Doc ID 14400 Rev 5

8.4.3 Configurable clock output register (CLK_CCOR)

Address offset: 0x05

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved CCOSEL[1:0] CCOEN

rw rw rw

Bit 7:3 Reserved, must be kept cleared.

Bits 2:1 CCOSEL[1:0]: Configurable clock output selection.

These bits are written by software to select the source of the output clock available on the CLK_CCO
pin.

00: fMASTER
01: fMASTER/2
10: fMASTER/4
11: fMASTER/16

Bit 0 CCOEN: Configurable clock output enable

This bit is set and cleared by software.

0: CCO clock output disabled
1: CCO clock output enabled

RM0013 Clock control (CLK)

Doc ID 14400 Rev 5 67/266

8.4.4 CLK register map and reset values

Table 14. CLK register map and reset values

Address
offset(1)

1. Please refer to the “general hardware register map” table in the datasheet for details on register addresses.

Register name 7 6 5 4 3 2 1 0

0x00
CLK_CKDIVR
Reset value

-

0

-

0

-

0

-

0

-

0

-

0

HSIDIV1

1
HSIDIV0

1

0x01 to
0x02 Reserved area (2 bytes)

0x03
CLK_PCKENR

Reset value

PCKEN7

0

PCKEN6

0

PCKEN5

0

PCKEN4

0

PCKEN3

0

PCKEN2

0

PCKEN1

0

PCKEN0

0

0x04 Reserved area (1 byte)

0x05
CLK_CCOR
Reset value

-

0

-

0

-

0

-

0

-

0

CCOSEL1

0

CCOSEL0

0

CCOEN

0

Power management RM0013

68/266 Doc ID 14400 Rev 5

9 Power management

By default, after a system or power reset, the microcontroller is in Run mode. In this mode
the CPU is clocked by fMASTER and executes the program code, while the system clock to all
peripherals is gated off by the peripheral clock gating system.

While in Run mode, still keeping the CPU running and executing code, the application has
several ways to reduce power consumption, such as:

● Slowing down the system clock

● Gating the clocks to individual peripherals when they are unused

● Switching off any unused analog functions

However, when the CPU does not need to be kept running, three dedicated low power
modes can be used:

● Wait (wait for interrupt and wait for event)

● Active-halt

● Halt

One of these three modes can be selected and configured to obtain the best compromise
between lowest power consumption, fastest startup time and available wakeup sources.

9.1 General considerations
Low power consumption features are generally very important for all types of application for
energy saving. Ultra low power features are especially important for mobile applications to
ensure long battery lifetimes. This is also crucial for environmental protection.

In a silicon chip there are two kind of consumption:

● Static power consumption which is due to analog polarization and leakage.
Consumption due to leakage is so small that it is only significant in Halt and Active-halt
modes (Section 9.4: Low power modes).

● Dynamic power consumption which comes from running the digital parts of the chip.
It depends on VDD, clock frequency and load capacitors.

In a microcontroller device the consumption depends on:

● VDD supply voltage

● MCU size or number of digital gates (leakages and load capacitors)

● Clock frequency

● Number of active peripherals

● Available low power modes and low power levels

Device processing performance is also very important, as this allows the application to
minimize the time spent in Run mode and maximize the time in low power mode.

Using the MCU’s flexible power management features, you can obtain a range of significant
power savings while the system is running or able to resume operations quickly.

RM0013 Power management

Doc ID 14400 Rev 5 69/266

9.2 Managing the clock for low consumption

9.2.1 Slowing the system clocks

In run mode, choosing the clock frequency is very important to ensure the best compromise
between performance and consumption. The selection is done by programming the
CLK_CKDIVR register. 8.4.1: Clock divider register (CLK_CKDIVR) on page 65.

Note: In applications where the MCU can be halted for certain periods, the power consumption
can be minimized by keeping a fast clock (high performance execution) during active
periods, in order to reduce the ratio between active periods and Halt (that is “zero”-
consumption) periods.

9.2.2 Peripheral clock gating

For additional power saving you can use Peripheral Clock Gating (PCG). This can be done
at any time by selectively enabling or disabling the fMASTER clock connection to individual
peripherals. Refer to 8.4.2: Peripheral clock gating register (CLK_PCKENR) on page 65.

These settings are effective in both Run and Wait modes. 8.1.1: Peripheral clock gating
(PCG) on page 63.

Each PCG state represents a specific power or low power level.

9.3 Switching peripherals off
Any of the MCU peripherals can be deactivated when they are not used in order to minimize
power consumption. This is true for both analog and digital peripherals.

Each ON/OFF combination represents a specific power or low power level.

9.3.1 Analog peripherals

The analog comparators can be switched off by dedicated control bits: BIAS_EN and
COMPx_EN in the COMP_CR register.

9.3.2 Digital peripherals

Each of the digital peripherals can be switched off by a dedicated control bit:

● Single Wire Interface Module (SWIM) by the SWD bit in the SWIM_CSR register

● Auto-wakeup Unit (AWU) by the AWUEN bit in the AWU_CSR register

● Beeper by the BEEPEN bit in the AWU_CSR register

● Timers by the CEN bits in the TIMx_CR1 registers

● I2C by the PE bit in the I2C_CR1 register

● SPI by the SPE bit in the SPI_CR1

● USART by the USART_CR2 register

Note: These control bits should be written only when the corresponding peripheral clock is
enabled
Once the IWDG is activated, it cannot be disabled except with a reset.

Power management RM0013

70/266 Doc ID 14400 Rev 5

9.4 Low power modes
By default, the microcontroller is in run mode after a system or power reset. However the
device supports three low power modes to achieve the best compromise between low power
consumption, short startup time and available wakeup sources:

– Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt or a Reset can be used to exit the microcontroller from
Wait mode. Refer to Section 9.4.1: Wait mode on page 71

– Active-halt mode: The CPU and peripheral clocks are stopped, except RTC. The
wakeup can be triggered by RTC interrupts, external interrupts or reset.

– Halt mode: The CPU and peripheral clocks are stopped, the device remains powered
on. The wakeup is triggered by an external interrupt or reset. A few peripherals also
have wakeup from Halt capability.

The main characteristics of the three low power modes are summarized in Table 15.

In addition, the power consumption in Run mode can be reduced by one of the following
means:

– Slowing down the system clocks
– Gating the peripherals clocks when they are unused

Refer to Section 9.2: Managing the clock for low consumption on page 69.

Table 15. Low power mode management

Mode

(consumption level)

Main voltage
regulator

(MVR)
Oscillators CPU Peripherals Wakeup trigger event

Wait

(-)

WFI ON ON OFF ON(1) All internal or external
interrupts, reset

WFE ON ON OFF ON(1)
All internal or external
interrupts (2),
WFE events, reset

Active-halt

(- -)

OFF

(LPVR ON)
HSI OFF,
LSI ON

OFF

Only AWU, BEEP
and IWDG if
activated and if
“no watchdog in
Halt” option
disabled

AWU or external(3)
interrupts, reset

Halt

(- - -)

OFF

(LPVR ON)

LSI ON if
IWDG
activated
and if "no
watchdog in
Halt" option
is disabled.

OFF

Only BEEP and
IWDG if activated
and if “no
watchdog in Halt”
option disabled

External interrupts (3),
reset

1. If the peripheral clock is not disabled by Peripheral Clock Gating function.

2. Refer to: Wait for event (WFE) mode on page 71

3. Including communication peripheral interrupts (see interrupt vector table).

RM0013 Power management

Doc ID 14400 Rev 5 71/266

9.4.1 Wait mode

Wait mode is entered from run mode by executing a WFI (Wait For Interrupt) or WFE (Wait
For Event) instruction: this stops the CPU but allows the other peripherals and interrupt
controller to continue running. The consumption decreases accordingly. Wait mode can be
combined with PCG to further reduce power consumption of the device. Section 8.1.1:
Peripheral clock gating (PCG) on page 63.

In Wait mode, all the registers and RAM contents are preserved and the clock configuration
selected through the Clock divider register (CLK_CKDIVR) remains unchanged.

Wait for interrupt (WFI) mode

When an internal or external interrupt request occurs, the CPU wakes up from WFI mode,
services the interrupt and resumes processing.

Note: In an interrupt based application, where most of the processing is done through the interrupt
routines, the main program may be suspended by setting the activation level bit (AL) in the
CFG_GCR register. Setting this bit causes the CPU to return to WFI mode without restoring
the main execution context. This saves power by removing both the save/restore context
activity and the need for a main software loop execution for power management (in order to
return to WFI mode).

Wait for event (WFE) mode

There are two ways to wake up the CPU from WFE mode (see Table 15.: Low power mode
management on page 70):

● When an interrupt occurs:

– the CPU wakes up from WFE mode and services the interrupt. After processing
the interrupt, the processor goes back to WFE mode.

● When a WFE event occurs:

– the CPU wakes up and resumes processing. As the processing resumes directly
after the WFE instruction, there is no context save/restore activity (this saves time
and power consumption).

Note: In WFE mode, the interrupt sources are configured as external interrupts only if the
corresponding status flags are cleared in the WFE_CR1 or WFE_CR2 register. Otherwise,
they generate WFE events (no interrupt serviced and the user has to properly clear the
corresponding status flags in the EXTI_SR1 or EXTI_SR2 register). Refer to Section 9.5:
WFE registers on page 73, External interrupt status register 1 (EXTI_SR1) on page 53 and
External interrupt status register 2 (EXTI_SR2) on page 54.

Further power consumption reduction may be achieved using this mode together with
execution from RAM. In some very low power applications, when the main software routine
is short and has a low execution time, this routine can be moved to RAM and executed from
RAM. As the Flash program memory is not used at wakeup, the power consumption is then
reduced during run time.

At any moment, another routine (stored in the Flash program memory) can be executed by
software by simply calling/jumping to this routine.

Power management RM0013

72/266 Doc ID 14400 Rev 5

9.4.2 Halt mode

In this mode the master clock is stopped. This means that the CPU and all the peripherals
clocked by fMASTER or by derived clocks are disabled. As a result, none of the peripherals
are clocked and the digital part of the MCU consumes almost no power.

The Main voltage regulator (MVR) is switched off automatically when the MCU enters Halt
mode. The MCU core is powered only by the Low Power Voltage Regulator (LPVR) and all
the registers and RAM contents are preserved.

The MCU enters Halt mode when a HALT instruction is executed. Wakeup from Halt mode is
triggered by an external interrupt, sourced by a general purpose I/O port configured as
interrupt input or by an alternate function pin capable of triggering a peripheral interrupt.

In an interrupt based application, where most of the processing is done through the interrupt
routines, the main program may be suspended by setting the activation level bit (AL) in the
CPU configuration register. Setting this bit causes the CPU to return to Halt mode when
executing the return from interrupt, without restoring the main execution context.

This saves power by removing the save/restore context activity and by removing the need to
execute a main level software loop for power management (in order to return to WFI mode).

9.4.3 Active-halt mode

Active-halt mode is similar to Halt mode except that it does not require an external interrupt
for wakeup. It uses the AWU to generate a wakeup event internally after a programmable
delay.

To enter Active-halt mode, first enable the AWU as described in the AWU section. Then
execute a HALT instruction.

In Active-halt mode, the main oscillator, the CPU and almost all peripherals are stopped.
Only the LSI RC oscillator is running to drive the AWU counters, BEEP and IWDG counter if
enabled.

The Main voltage regulator (MVR) is switched off automatically when the MCU enters
Active-halt mode. The MCU core is powered only by the Low power voltage regulator
(LPVR) and all registers and RAM contents are preserved.

RM0013 Power management

Doc ID 14400 Rev 5 73/266

9.5 WFE registers
These registers are used to configure different interrupt sources as external interrupts or
WFE events. Refer to Section : Wait for event (WFE) mode on page 71

9.5.1 WFE control register 1 (WFE_CR1)

Address Offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

EXTI_EV3 EXTI_EV2 EXTI_EV1 EXTI_EV0 Reserved Reserved TIM2_EV1 TIM2_EV0

rw rw rw rw rw rw rw rw

Bit 7 EXTI_EV3: External interrupt event 3

0: Interrupt sources from pin 3 of all ports generate external interrupts.
1: Interrupt sources from pin 3 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

Bit 6 EXTI_EV2: External interrupt event 2

0: Interrupt sources from pin 2 of all ports generate external interrupts.
1: Interrupt sources from pin 2 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

Bit 5 EXTI_EV1: External interrupt event 1

0: Interrupt sources from pin 1 of all ports generate external interrupts.
1: Interrupt sources from pin 1 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

Bit 4 EXTI_EV0: External interrupt event 0
0: Interrupt sources from pin 0 of all ports generate external interrupts.
1: Interrupt sources from pin 0 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

Bits 3:2 Reserved, must be kept cleared.

Bit 1 TIM2_EV1: TIM2 event 1
0: TIM2 capture and compare interrupt sources generate external interrupts.
1: TIM2 capture and compare interrupt sources logically ORed and configured to generate WFE
events (no interrupt serviced).

This bit is written by software.

Bit 0 TIM2_EV0: TIM2 event 0
0: TIM2 update, trigger and break interrupt sources generate external interrupts.
1: TIM2 update, trigger and break interrupt sources logically ORed and configured to generate WFE
events (no interrupt serviced).

This bit is written by software.

Power management RM0013

74/266 Doc ID 14400 Rev 5

9.5.2 WFE control register 2 (WFE_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved EXTI_EVD EXTI_EVB EXTI_EV7 EXTI_EV6 EXTI_EV5 EXTI_EV4

rw rw rw rw rw rw

Bits 7:6 Reserved.

Bit 5 EXTI_EVD: External interrupt event on Port D

0: Interrupt sources from Port D generate external interrupts.
1: Interrupt sources from Port D generate WFE events (no interrupt serviced).

This bit is written by software.

Bit 4 EXTI_EVB: External interrupt event on Port B
0: Interrupt sources from Port B generate external interrupts.
1: Interrupt sources from Port B generate WFE events (no interrupt serviced).

This bit is written by software

Bit 3 EXTI_EV7: External interrupt event 7
0: Interrupt sources from pin 7 of all ports generate external interrupts.
1: Interrupt sources from pin 7 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

Bit 2 EXTI_EV6: External interrupt event 6

0: Interrupt sources from pin 6 of all ports generate external interrupts.
1: Interrupt sources from pin 6 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

Bit 1 EXTI_EV5: External interrupt event 5

0: Interrupt sources from pin 5 of all ports generate external interrupts.
1: Interrupt sources from pin 5 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

Bit 0 EXTI_EV4: External interrupt event 4
0: Interrupt sources from pin 4 of all ports generate external interrupts.
1: Interrupt sources from pin 4 of all ports generate WFE events (no interrupt serviced).

This bit is written by software.

RM0013 Power management

Doc ID 14400 Rev 5 75/266

9.6 WFE register map and reset values

Table 16. WFE register map

Address
offset(1)

Register
name

7 6 5 4 3 2 1 0

0x00 WFE_CR1
Reset value

EXTI_EV3
0

EXTI_EV2
0

EXTI_EV1
0

EXTI_EV0
0

PXS_EV
0

-
0

TIM2_EV1
1

TIM2_EV0
1

0x01 WFE_CR2
Reset value

-
0

-
0

EXTI_EVD
0

EXTI_EVB
0

EXTI_EV7
0

EXTI_EV6
0

EXTI_EV5
0

EXTI_EV4
0

1. Please refer to the “general hardware register map” table in the datasheet for details on register addresses.

General purpose I/O ports (GPIO) RM0013

76/266 Doc ID 14400 Rev 5

10 General purpose I/O ports (GPIO)

10.1 Introduction
General purpose input/output ports are used for data transfers between the chip and the
external world. An I/O port can contain up to eight pins. Each pin can be individually
programmed as a digital input or digital output. In addition, some ports may have alternate
functions like analog inputs, external interrupts, input/output for on-chip peripherals. Only
one alternate function can be mapped to a pin at a time, the alternate function mapping is
controlled by option byte. Refer to the datasheet for a description of the option bytes.

An output data register, Input pin register, data direction register, option register, and
Configuration register are associated with each port. A particular port will behave as an
input or output depending on the status of the data direction register of the port.

10.2 GPIO main features
● Port bits can be configured individually

● Selectable input modes: floating input or input with pull-up

● Selectable output modes: push-pull output or pseudo-open-drain.

● Separate registers for data input and output

● External interrupts can be enabled and disabled individually

● Output slope control for reduced EMC noise

● Alternate function I/Os for on-chip peripherals

● Read-modify-write possible on data output latch

● I/O state guaranteed in voltage range 1.6 V to VDDIOmax

RM0013 General purpose I/O ports (GPIO)

Doc ID 14400 Rev 5 77/266

Figure 13. GPIO block diagram

10.3 Port configuration and usage
An output data register (ODR), pin input register (IDR), data direction register (DDR) are
always associated with each port.

The control register 1 (CR1) and control register 2 (CR2) allow input/output options. An I/O
pin is programmed using the corresponding bits in the DDR, ODR, CR1 and CR2 registers.

Bit n in the registers corresponds to pin n of the Port.

The various configurations are summarized in Table 17.

ODR REGISTER

DDR REGISTER

CR1 REGISTER

D
A

T
A

 B
U

S

PIN

VDDALTERNATE
ENABLE

ALTERNATE
OUTPUT

1

0

PULL-UP
CONDITION

P-BUFFER
(see table below)

N-BUFFER

PULL-UP
(see table below)

ALTERNATE FUNCTION
INPUT TO ON-CHIP

VDD

DIODES
(see table below)

FROM
OTHER
BITS

EXTERNAL

TO INTERRUPT
INTERRUPT

CR2 REGISTER

PERIPHERAL

CONTROLLER

SLOPE
CONTROL

IDR REGISTER
(Read only)

OUTPUT

INPUT

PAD

PROTECTION

General purpose I/O ports (GPIO) RM0013

78/266 Doc ID 14400 Rev 5

Note: The diode connected to VDD is not implemented in true open drain pads. A local protection
between the pad and VOL is implemented to protect the device against positive stress.

Warning: On some packages, some ports must be considered as active
even if they do not exist on the package. To avoid spurious
effects, configure them as pull-up inputs without interrupt at
startup, and keep them in this state when changing the port
configuration. Refer to the datasheet for additional
information.

Table 17. I/O port configuration summary

Mode
DDR
bit

CR1
bit

CR2
bit

Function Pull-up P-buffer
Diodes

to VDD to VSS

Input

0 0 0
Floating without
interrupt

Off

Off

On

On

0 1 0
Pull-up without
interrupt

On

0 0 1 Floating with interrupt Off

0 1 1 Pull-up with interrupt On

Output

1 0 0 Open drain output

Off

Off

1 1 0 Push pull output On

1 x 1
Output speed limited to
10 MHz

Depends
on CR1 bit

1 x x
True open drain (on
specific pins)

Not implemented
Not im-

plemented
(see note)

RM0013 General purpose I/O ports (GPIO)

Doc ID 14400 Rev 5 79/266

10.3.1 Input modes

Clearing the DDRx bit selects input mode. In this mode, reading a IDR bit returns the digital
value of the corresponding I/O pin.

Refer to Section 10.7: Input mode details on page 80 for information on analog input,
external interrupts and Schmitt trigger enable/disable.

As shown in Table 17, four different input modes can be theoretically be configured by
software: floating without interrupt, floating with interrupt, pull-up without interrupt or pull-up
with interrupt. However in practice, not all ports have external interrupt capability or pull-ups.
You should refer to the datasheet pin-out description for details on the actual hardware
capability of each port.

10.3.2 Output modes

Setting the DDRx bit selects output mode. In this mode, writing to the ODR bits applies a
digital value to the I/O through the latch. Reading IDR bit returns the digital value from the
corresponding I/O pin. Using the CR1, CR2 registers, different output modes can be
configured by software: Push-pull output, Open-drain output.

Refer to Section 10.8: Output mode details on page 80 for more information.

10.4 Reset configuration
All I/O pins are generally input floating under reset (i.e. during the reset phase) and at reset
state (i.e. after reset release). However, a few pins may have a different behavior. Refer to
the datasheet pinout description for all details.

10.5 Unused I/O pins
Unused I/O pins must be connected to fixed voltage levels. Either connect a pull-up or pull-
down to the unused I/O pins.

10.6 Low power modes

Table 18. Effect of low power modes on GPIO ports

Mode Description

Wait
No effect on I/O ports. External interrupts cause the device to exit from
Wait mode.

Halt
No effect on I/O ports. External interrupts cause the device to wakeup from
Halt mode.

General purpose I/O ports (GPIO) RM0013

80/266 Doc ID 14400 Rev 5

10.7 Input mode details

10.7.1 Alternate function input

Some I/Os can be used as alternate function input. For example as the port may be used as
the input capture input to a timer. Alternate function inputs are not selected automatically,
you select them by writing to a control bit in the registers of the corresponding peripheral.
For Alternate Function input, you should select floating or pull-up input configuration in the
DDR and CR1 registers.

10.7.2 Interrupt capability

You can configure an I/O as an input with interrupt by setting the CR2x bit while the I/O is in
input mode. In this configuration, a signal edge or level input on the I/O generates an
interrupt request.

Falling or rising edge sensitivity is programmed independently for each interrupt vector in
the EXTI_CR[2:1] registers.

External interrupt capability is only available if the port is configured in input mode.

Interrupt masking

Interrupts can be enabled/disabled individually by programming the corresponding bit in the
configuration register (Px_CR2). At reset state, the interrupts are disabled.

10.8 Output mode details

10.8.1 Alternate function output

Alternate function outputs provide a direct path from a peripheral to an output or to an I/O
pad, taking precedence over the port bit in the data output latch register (Px_ODR) and
forcing the Px_DDR corresponding bit to 1.

An alternate function output can be push-pull or pseudo-open drain depending on the
peripheral and Control register 1 (Px_CR1) and slope can be controlled depending on the
Control register 2 (Px_CR2) values.

Examples:

SPI outputs must be set-up as push-pull. The slope of SPI outputs is controlled by hardware
and configured in fast mode to enable an optimal operation. The user must then keep the
CR2 slope control bit cleared to avoid spurious interrupts.

10.8.2 Slope control

The output frequency can be controlled by software using the CR2 bit. Setting the CR bit
selects 10 MHz output frequency. This feature can be applied in either open drain or push-
Pull output mode on I/O ports of output type O3 or O4. Refer to the pin description table for
the specific output type information for each port.

RM0013 General purpose I/O ports (GPIO)

Doc ID 14400 Rev 5 81/266

10.9 GPIO registers
The bit of each port register drives the corresponding pin of the port.

10.9.1 Port x output data register (Px_ODR)

Address offset: 0x00

Reset value: 0x00

10.9.2 Port x pin input register (Px_IDR)

Address offset: 0x01

Reset value: 0xxx

7 6 5 4 3 2 1 0

ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw

Bits 7:0 ODR[7:0]: Output data register bits

Writing to the ODR register when in output mode applies a digital value to the I/O through the latch.
Reading the ODR returns the previously latched value in the register.
In Input mode, writing in the ODR register, latches the value in the register but does not change the
pin state. The ODR register is always cleared after reset. Bit read-modify-write instructions (BSET,
BRST) can be used on the DR register to drive an individual pin without affecting the others.

7 6 5 4 3 2 1 0

IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r

Bits 7:0 IDR[7:0]: Pin input values

The pin register can be used to read the pin value irrespective of whether port is in input or output
mode. This register is read-only.
0: Low logic level
1: High logic level

General purpose I/O ports (GPIO) RM0013

82/266 Doc ID 14400 Rev 5

10.9.3 Port x data direction register (Px_DDR)

Address offset: 0x02

Reset value: 0x00

10.9.4 Port x control register 1 (Px_CR1)

Address offset: 0x03

Reset value: 0x001)

1. For PA_CR1, the reset value is 0x01.

7 6 5 4 3 2 1 0

DDR7 DDR6 DDR5 DDR4 DDR3 DDR2 DDR1 DDR0

rw rw rw rw rw rw rw rw

Bits 7:0 DDR[7:0]: Data direction bits

These bits are set and cleared by software to select input or output mode for a particular pin of a
port.
0: Input mode
1: Output mode

7 6 5 4 3 2 1 0

C17 C16 C15 C14 C13 C12 C11 C10

rw rw rw rw rw rw rw rw

Bits 7:0 C1[7:0]: Control bits

These bits are set and cleared by software. They select different functions in input mode and output
mode see Table 17 on page 78.

● In input mode (DDR = 0):
0: Floating input
1: Input with pull-up

● In output mode (DDR = 1):
0: Pseudo open drain
1: Push-pull, slope control for the output depends on the corresponding CR2 bit

Note: This bit has no effect on true open drain ports (refer to pin marked “T” in datasheet pin
description table).

RM0013 General purpose I/O ports (GPIO)

Doc ID 14400 Rev 5 83/266

10.9.5 Port x control register 2 (Px_CR2)

Address offset: 0x04

Reset value: 0x00

10.9.6 GPIO register map and reset values

Each GPIO port has five registers mapped as shown in Table 19. Refer to the register map
in the corresponding datasheet for the base address for each port.

Note: At reset state, all ports are input floating. Exceptions are indicated in the pin description
table of the corresponding datasheet.

7 6 5 4 3 2 1 0

C27 C26 C25 C24 C23 C22 C21 C20

rw rw rw rw rw rw rw rw

Bits 7:0 C2[7:0]: Control bits

These bits are set and cleared by software. They select different functions in input mode and output
mode. In input mode, the CR2 bit enables the interrupt capability if available. If the I/O does not have
interrupt capability, setting the CR2 bit has no effect. In output mode, setting the bit increases the
speed of the I/O. This applies to ports with O3 and O4 output types (see pin description table).

● In input mode (DDR = 0):
0: External interrupt disabled
1: External interrupt enabled

● In output mode (DDR = 1):
0: Output speed up to 2 MHz
1: Output speed up to 10 MHz

Table 19. GPIO register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00 Px_ODR
ODR7

0
ODR6

0
ODR5

0
ODR4

0
ODR3

0
ODR2

0
ODR1

0
ODR0

0

0x01 Px_IDR
IDR7

x
IDR6

x
IDR5

x
IDR4

x
IDR3

x
IDR2

x
IDR1

x
IDR0

x

0x02 Px_DDR
DDR7

0
DDR6

0
DDR5

0
DDR4

0
DDR3

0
DDR2

0
DDR1

0
DDR0

0

0x03 Px_CR1(1) C17
0

C16
0

C15
0

C14
0

C13
0

C12
0

C11
0

C10
0

0x04 Px_CR2
C27

0
C26

0
C25

0
C24

0
C23

0
C22

0
C21

0
C20

0

1. For PA_CR1, the reset value is 0x01.

Auto-wakeup (AWU) RM0013

84/266 Doc ID 14400 Rev 5

11 Auto-wakeup (AWU)

11.1 Introduction
The AWU is used to provide an internal wakeup time base that is used when the MCU goes
into Active-halt power saving mode. This time base is clocked by the low speed internal
(LSI) RC oscillator clock.

11.2 LSI clock measurement
To ensure the best possible accuracy when using the LSI clock, its frequency can be
measured with TIM2 timer input capture 1.

Figure 14. AWU block diagram

COUNTER

AWU COUNTER

6-BIT PROG

AWUTB[3:0]

15 time bases

AWU Interrupt

AWUEN & HALT/WAIT

MSR

APR[5:0]

to Timer 2 input capture 1
(for measurement)

fLSI

fLS

LSI RC
38 kHz

RM0013 Auto-wakeup (AWU)

Doc ID 14400 Rev 5 85/266

11.3 AWU functional description

11.3.1 AWU operation

To use the AWU, perform the following steps in order:

1. Measure the LSI clock frequency using the MSR bit in AWU_CSR register and TIM2
input capture 1.

2. Define the appropriate prescaler value by writing to the APR [5:0] bits in the
Asynchronous prescaler register (AWU_APR).

3. Select the desired auto-wakeup delay by writing to the AWUTB[3:0] bits in the
Timebase selection register (AWU_TBR).

4. Set the AWUEN bit in the Control/status register (AWU_CSR).

5. Execute the HALT instruction. AWU counters are reloaded and start to count a new
AWU time interval.

Note: The counters only start when the MCU enters active-halt mode after a HALT instruction
(refer to the active-halt mode section in the power management chapter). The AWU interrupt
is then enabled at the same time.

The prescaler counter starts to count only if APR[5:0] value is different from its reset value,
0x3F.

Idle mode

If the AWU is not in use, then the AWUTB[3:0] bits the Timebase selection register
(AWU_TBR) should be loaded with 0b0000 to reduce power consumption.

Auto-wakeup (AWU) RM0013

86/266 Doc ID 14400 Rev 5

11.3.2 Time base selection

Please refer to the Asynchronous prescaler register (AWU_APR) and Timebase selection
register (AWU_TBR) descriptions.

The AWU time intervals depend on the values of:

● AWUTB[3:0] bits. This gives the counter output rank.

● APR[5:0] bits. This gives the prescaler division factor (APRDIV).

15 non-overlapped ranges of time intervals can be defined as follows:

In order to obtain the right values for AWUTB[3:0] and APRDIV, you have to:

● First, search the interval range corresponding to the desired time interval. This gives
the AWUTB[3:0] value. This can be done usingTable 20: Time base calculation table.

● Then APRDIV can be chosen to obtain a time interval value as close as possible to the
desired one. This can be done using the formulas listed Table 20.

Note: If the target value is between 211x128/fLS and 211x130/fLS or between 211x320/fLS and
211x330/fLS, the value closer to the target one must be chosen.

Table 20. Time base calculation table

Interval range
AWUTB[3:0]

APRDIV formula for
time interval
calculation

APRDIV
rangefLS = f fLS = 38 kHz

2/f - 64/f 0.052632 ms - 1.68ms 0001 APRDIV/fLS 2 to 64

2x32/f - 2x2x32/f 1.68 ms - 3.37 ms 0010 2 x APRDIV/fLS 32 to 64

2x64/f - 2x2x64/f 3.37 ms - 6.74 ms 0011 22 x APRDIV/fLS 32 to 64

22x64/f - 22x128/f 6.74 ms - 13.47 ms 0100 23 x APRDIV/fLS 32 to 64

23x64/f - 23x128/f 13.47 ms - 26.95 ms 0101 24 x APRDIV/fLS 32 to 64

24x64/f - 24x128/f 26.95 ms - 53.89 ms 0110 25 x APRDIV/fLS 32 to 64

25x64/f - 25x128/f 53.89 ms - 107.8 ms 0111 26 x APRDIV/fLS 32 to 64

26x64/f - 26x128/f 107.8 ms - 215.6 ms 1000 27 x APRDIV/fLS 32 to 64

27x64/f - 27x128/f 215.6 ms - 431.2 ms 1001 28 x APRDIV/fLS 32 to 64

28x64/f - 28x128/f 431.2 ms - 862.3 ms 1010 29 x APRDIV/fLS 32 to 64

29x64/f - 29x128/f 0.86 s - 1.7 s 1011 210 x APRDIV/fLS 32 to 64

210x64/f - 210x128/f 1.7 s - 3.4 s 1100 211 x APRDIV/fLS 32 to 64

211x64/f - 211x128/f 3.4 s - 6.9 s 1101 212 x APRDIV/fLS 32 to 64

211x130/f - 211x320/f 7.01 s - 17.24 s 1110 5 x 211 x APRDIV/fLS 26 to 64

211x330/f - 212x960/f 17.79 s - 103.5 s 1111 30 x 211 x APRDIV/fLS 11 to 64

RM0013 Auto-wakeup (AWU)

Doc ID 14400 Rev 5 87/266

Example 1

● fLS = 128 kHz

● Target time interval = 6 ms

The appropriate interval range is: 4 ms - 8 ms
so the AWUTB[3:0] value is 0x5.

The APRDIV value is:
6 ms = 24 x APRDIV / fLS => APRDIV = (6*10-3 x fLS) / 24 = 48
so the APR[5:0] value is 48 (0x30)

Example 2

● fLS = 128 kHz

● Target time interval = 3 s

The appropriate interval range is: 2.080 s - 5.120 s
So the AWUTB[3:0] value is 0xE.

The APRDIV value is:
3 s = 5 x 211 x APRDIV / fLS => APRDIV = (3 x fLS) / 5 x 211 = 37.5
So the AWUTB[3:0] can be either 37 or 38 which gives a time base of 2.96s or 3.04s
respectively. This is not exactly 3s.

11.3.3 LSI clock frequency measurement

Due to the oscillator frequency dispersion, to obtain a precise AWU time interval or beeper
output, the exact LSI frequency has to be measured.

Use the following procedure:

1. Set the MSR bit in the Control/status register (AWU_CSR) to connect the LSI clock
internally to a timer input capture.

2. Measure the frequency of the LSI clock using the Timer input capture interrupt.

3. Write the appropriate value in the APR [5:0] bits in the Asynchronous prescaler register
(AWU_APR) to adjust the AWU time interval to the desired length. The AWUTB[3:0]
bits can be modified to select different time intervals.

LSI clock frequency measurement can also be used to calibrate the beeper frequency (see
Section 12.2.2).

Auto-wakeup (AWU) RM0013

88/266 Doc ID 14400 Rev 5

11.4 AWU registers

11.4.1 Control/status register (AWU_CSR)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
AWUF AWUEN

Reserved
MSR

rc_r rw rw

Bits 7:6 Reserved, must be kept cleared.

Bit 5 AWUF: Auto-wakeup flag
This bit is set by hardware when the AWU module generates an interrupt and cleared by reading the
AWU_CSR register. Writing to this bit does not change its value.

0: No AWU interrupt occurred
1: AWU interrupt occurred

Bit 4 AWUEN: Auto-wakeup enable

This bit is set and cleared by software. It enables the auto-wakeup feature. If the microcontroller enters
active-halt or wait mode, the AWU feature wakes up the microcontroller after a programmable time
delay.

0: AWU (Auto-wakeup) disabled
1: AWU (Auto-wakeup) enabled

Bits 3:1 Reserved, must be kept cleared.

Bit 0 MSR: Measurement enable

This bit connects the fLS clock to a timer input capture. This allows the timer to be used to measure the
LSI frequency (fLSI).

0: Measurement disabled
1: Measurement enabled

Note: Refer to the datasheet for information on which timer input capture can be connected to the LSI
clock in the specific product).

RM0013 Auto-wakeup (AWU)

Doc ID 14400 Rev 5 89/266

11.4.2 Asynchronous prescaler register (AWU_APR)

Address offset: 0x01

Reset value: 0x3F

11.4.3 Timebase selection register (AWU_TBR)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
APR[5:0]

rw rw rw rw rw rw

Bits 7:6 Reserved, must be kept cleared.

Bits 5:0 APR[5:0]: Asynchronous prescaler divider
These bits are written by software to select the prescaler divider (APRDIV) feeding the counter clock.
0x00: APRDIV = 2
0x01: APRDIV = 3
...
0x06: APRDIV = 8
...
0x0E: APRDIV = 16
0x0F: APRDIV = 17
....
0x3E: APRDIV = 64

Note: This register must not be kept at its reset value (0x3F)

7 6 5 4 3 2 1 0

Reserved
AWUTB[3:0]

rw rw rw rw

Bits 7:4 Reserved, must be kept cleared.

Bits 3:0 AWUTB[3:0]: Auto-wakeup timebase selection
These bits are written by software to define the time interval between AWU interrupts. AWU
interrupts are enabled when AWUEN = 1.
0000: No interrupt

0001: APRDIV/fLS 0010: 2xAPRDIV/fLS 0011: 22APRDIV/fLS

0100: 23APRDIV/fLS 0101: 24APRDIV/fLS 0110: 25APRDIV/fLS

0111: 26APRDIV/fLS 1000: 27APRDIV/fLS 1001: 28APRDIV/fLS

1010: 29APRDIV/fLS 1011: 210APRDIV/fLS 1100: 211APRDIV/fLS

1101: 212APRDIV/fLS 1110: 5x211APRDIV/fLS 1111: 30x211APRDIV/fLS

Auto-wakeup (AWU) RM0013

90/266 Doc ID 14400 Rev 5

11.4.4 AWU register map and reset values

Table 21. AWU register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00 AWU_CSR
-
0

-
0

AWUF
0

AWUEN
0

-
0

-
0

-

0
MSR

0

0x01 AWU_APR
-
0

-
0

APR5
1

APR4
1

APR3
1

APR2
1

APR1
1

APR0
1

0x02 AWU_TBR -0
-
0

-
0

-
0

AWUTB
3
0

AWUTB
2
0

AWUTB
1
0

AWUTB
0
0

RM0013 Beeper (BEEP)

Doc ID 14400 Rev 5 91/266

12 Beeper (BEEP)

12.1 Introduction
This function generates a beep signal in the range of 1, 2 or 4 kHz when the LSI clock is
operating at a frequency of 38 kHz.

Figure 15. Beep block diagram

BEEPEN

BEEP pin

LSI RC
38 kHz

MSR
to Timer Input Capture

5-BIT BEEPER PROG
COUNTER

~8 kHz
3-BIT COUNTER

1 kHz, 2 kHz, 4 kHz

(for measurement)

fLS

BEEPDIV[4:0] bits BEEPSEL[1:0] bits

Beeper (BEEP) RM0013

92/266 Doc ID 14400 Rev 5

12.2 BEEP functional description

12.2.1 Beeper operation

To use the beep function, perform the following steps in order:

1. Calibrate the LSI clock frequency as described in Section 12.2.2: Beeper calibration to
define BEEPDIV[4:0] value.

2. Select 1 kHz, 2 kHz or 4 kHz output frequency by writing to the BEEPSEL[1:0] bits in
the Beep control/status register (BEEP_CSR).

3. Set the BEEPEN bit in the Beep control/status register (BEEP_CSR) to enable the LSI
clock source.

Note: The prescaler counter starts to count only if BEEPDIV[4:0] value is different from its reset
value, 0x1F.

12.2.2 Beeper calibration

This procedure can be used to calibrate the LSI 38 kHz clock in order to reach the standard
frequency output, 1 kHz, 2 kHz or 4 kHz.

Use the following procedure:

1. Measure the LSI clock frequency (refer to Section 11.3.3: LSI clock frequency
measurement above).

2. Calculate the BEEPDIV value as follows, where A and x are the integer and fractional
part of fLS/8 (in kHz):

BEEPDIV = A-2 when x is less than or equal to A/(1+2*A), else

BEEPDIV = A-1

3. Write the resulting BEEPDIV value in the BEEPDIV[4:0] bits in the Beep control/status
register (BEEP_CSR).

RM0013 Beeper (BEEP)

Doc ID 14400 Rev 5 93/266

12.3 BEEP registers

12.3.1 Beep control/status register (BEEP_CSR)

Address offset: 0x00

Reset value: 0x1F

12.3.2 BEEP register map and reset values

7 6 5 4 3 2 1 0

BEEPSEL[1:0] BEEPEN BEEPDIV[4:0]

rw rw rw rw rw rw rw rw

Bits 7:6 BEEPSEL[1:0]: Beep selection

These bits are set and cleared by software to select 1, 2 or 4 kHz beep output when calibration is
done.
00: fLS/(8 x BEEPDIV) kHz output
01: fLS/(4 x BEEPDIV) kHz output
1x: fLS/(2 x BEEPDIV) kHz output

Bit 5 BEEPEN: Beep enable

This bit is set and cleared by software to enable the beep feature.
0: Beep disabled
1: Beep enabled

Bits 4:0 BEEPDIV[4:0]: Beep prescaler divider

These bits are set and cleared by software to define the Beeper prescaler dividing factor BEEPDIV.
0x00: BEEPDIV = 2
0x01: BEEPDIV = 3
...
0x0E: BEEPDIV = 16
0x0F: BEEPDIV = 17
....
0x1E: BEEPDIV = 32

Note: This register must not be kept at its reset value (0x1F)

Table 22. BEEP register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00 BEEP_CSR
BEEP
SEL20

BEEP
SEL10

BEEPE
N0

BEEP
DIV41

BEEP
DIV31

BEEP
DIV21

BEEP
DIV11

BEEP
DIV01

Independent watchdog (IWDG) RM0013

94/266 Doc ID 14400 Rev 5

13 Independent watchdog (IWDG)

13.1 Introduction
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures. It is clocked by the 38 kHz LSI internal RC clock source, and
thus stays active even if the main clock fails.

13.2 IWDG functional description
Figure 16 shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCC in the key register
(IWDG_KR), the counter starts counting down from the reset value of 0xFF. When it reaches
the end of count value (0x00) a reset signal is generated (WDG RESET).

Once enabled, the independent watchdog can be configured through the IWDG_PR, and
IWDG_RLR registers. The IWDG_PR register is used to select the prescaler divider feeding
the counter clock. Whenever the KEY_REFRESH value (0xAA) is written in the IWDG_KR
register, the IWDG is refreshed by reloading the IWDG_RLR value into the counter and the
watchdog reset is prevented.

The IWDG_PR and IWDG_RLR registers are write protected. To modify them, first write the
KEY_ACCESS code (0x55) in the IWDG_KR register. The sequence can be aborted by
writing 0xAA in the IWDG_KR register to refresh it.

Refer to Section 13.3: IWDG registers for details on the IWDG registers.

Figure 16. Independent watchdog block diagram

Hardware watchdog feature

If the hardware watchdog feature has been enabled through the IWDG_HW option byte, the
watchdog is automatically enabled at power-on, and generates a reset unless the key
register is written by the software before the counter reaches end of count. Refer to the
option byte description in the datasheet.

WDG reset

prescaler
8-bit down-counter

IWDG_PR
register

IWDG_RLR
reload register

7-bit

IWDG_KR
key register LSI clock

(38 kHz)

RM0013 Independent watchdog (IWDG)

Doc ID 14400 Rev 5 95/266

Timeout period

The timeout period is a function of this value and the clock prescaler. It is determined by the
following equation:

with:

T = Time of count down (time needed to generate a reset after a reload)

TLSI = Period of low speed internal clock source (low power RC)

Ps= Prescaler selection (from 4 to 256 depending on IWDG_PR register)

Rv = Reload value (from 0 to 255 depending on IWDG_RLR)

Refer to the table below for the values of the minimum timeout periods.

Using the IWDG in Halt/Active-halt mode
The IWDG can continue to work in Halt or Active-halt mode, depending on the configuration
of the IWDG_HALT option byte. In this case, it can wake up the device from one of these
modes. For more details, please refer to the Option Byte description in the datasheet.

Note: The application must configure correctly the IWDG timeout and refresh the IWDG counter
before executing the HALT instruction, to avoid unexpected IWDG reset.

Table 23. Min/Max IWDG timeout (LSI clock frequency = 38 kHz)

Prescaler divider PR[2:0] bits
RL[7:0]= 0x00 RL[7:0]= 0xFF

Min. timeout (ms) Max. timeout (ms)

/4 0 0.10 26.94

/8 1 0.21 53.89

/16 2 0.42 107.78

/32 3 0.84 215.57

/64 4 1.68 431.15

/128 5 3.36 862.31

/256 6 6.73 1724.63

T TLSI PS× Rv 1+()×=

Independent watchdog (IWDG) RM0013

96/266 Doc ID 14400 Rev 5

13.3 IWDG registers

13.3.1 Key register (IWDG_KR)

Address offset: 0x00

Reset value: undefined

13.3.2 Prescaler register (IWDG_PR)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

KEY[7:0]

w w w w w w w w

Bits 7:0 KEY[7:0]: Key value

The KEY_REFRESH value must be written by software at regular intervals, otherwise the watchdog
generates an MCU reset when the counter reaches 0.

If the IWDG is not enabled by option byte (see datasheet for option byte description), the
KEY_ENABLE value is the first value to be written in this register.

KEY_ENABLE value = 0xCC
Writing the KEY_ENABLE value starts the IWDG.
KEY_REFRESH value = 0xAA
Writing the KEY_REFRESH value refreshes the IWDG.
KEY_ACCESS value = 0x55
Writing the KEY_ACCESS value enables the access to the protected IWDG_PR and IWDG_RLR
registers (see Section 13.2).

7 6 5 4 3 2 1 0

Reserved PR[2:0]

rw rw rw

Bits 7:3 Reserved, must be kept cleared.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected (see Section 13.2). They can be written by software to select the
prescaler divider feeding the counter clock.

000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: Reserved

RM0013 Independent watchdog (IWDG)

Doc ID 14400 Rev 5 97/266

13.3.3 Reload register (IWDG_RLR)

Address offset: 0x02

Reset value: 0xFF

13.3.4 IWDG register map and reset values

7 6 5 4 3 2 1 0

RL[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0

RL[7:0]: Watchdog counter reload value

These bits are write access protected (see Section 13.2). They are written by software to define the
value to be loaded in the watchdog counter each time the value 0xAA is written in the IWDG_KR
register. The watchdog counter counts down from this value. The timeout period is a function of this
value and the clock prescaler. Refer to Table 23.

Table 24. IWDG register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00 IWDG_KR
Reset value

KEY7
x

KEY6
x

KEY5
x

KEY4
x

KEY3
x

KEY2
x

KEY1
x

KEY0
x

0x01 IWDG_PR
Reset value

-
0

-
0

-
0

-
0

-
0

PR2
0

PR1
0

PR0
0

0x02 IWDG_RLR
Reset value

RL7
1

RL6
1

RL5
1

RL4
1

RL3
1

RL2
1

RL1
1

RL0
1

Inter-integrated circuit (I2C) interface RM0013

98/266 Doc ID 14400 Rev 5

14 Inter-integrated circuit (I2C) interface

14.1 Introduction
I2C (inter-integrated circuit) bus interface serves as an interface between the microcontroller
and the serial I2C bus. It provides multi-master capability, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports standard and fast speed modes.

14.2 I2C main features
● Parallel-bus/I2C protocol converter

● Multi-master capability: the same interface can act as Master or Slave

● I2C Master features:

– Clock generation

– Start and Stop generation

● I2C Slave features:

– Programmable I2C Address detection

– Stop bit detection

● Generation and detection of 7-bit/10-bit addressing and general call

● Supports different communication speeds:

– Standard speed (up to 100 kHz),

– Fast speed (up to 400 kHz)

● Status flags:

– Transmitter/receiver mode flag

– End-of-byte transmission flag

– I2C busy flag

● Error flags:

– Arbitration lost condition for master mode

– Acknowledgement failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/underrun if clock stretching is disabled

● 3 types of interrupts:

– 1 communication interrupt

– 1 error condition interrupt

– 1 wakeup from Halt interrupt

● Wakeup capability:

– MCU wakes up from low power mode on address detection in slave mode.

● Optional clock stretching

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 99/266

14.3 I2C general description
In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz), or fast (up to 400 kHz) I2C bus.

Mode selection

The interface can operate in one of the four following modes:

● Slave transmitter

● Slave receiver

● Master transmitter

● Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a STOP generation occurs, allowing Multi-Master capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to the following figure.

Figure 17. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (7-bit/
10-bit and/or general call address) can be selected by software.

The block diagram of the I2C interface is shown in Figure 18.

SCL

SDA

1 2 8 9

MSB ACK

STOP START
CONDITIONCONDITION

Inter-integrated circuit (I2C) interface RM0013

100/266 Doc ID 14400 Rev 5

Figure 18. I2C block diagram

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTERS

CLOCK CONTROL

STATUS REGISTERS

CONTROL REGISTERS

CONTROL

CLOCK

DATA

SCL

LOGIC

DATA REGISTER

PEC REGISTER

INTERRUPTS

PEC CALCULATION

SDA

REGISTER (CCR)

(SR1,SR2 & SR3)

(CR1&CR2)

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 101/266

14.4 I2C functional description
By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

14.4.1 I2C slave mode

The peripheral input clock must be programmed in the I2C_FREQR register in order to
generate correct timings. The peripheral input clock frequency must be at least:

● 1 MHz in Standard mode

● 4 MHz in Fast mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OARLSB) or the
General Call address (if ENGC = 1).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit is
set.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Inter-integrated circuit (I2C) interface RM0013

102/266 Doc ID 14400 Rev 5

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Transfer sequencing EV1 EV3 in the following figure).

When the acknowledge pulse is received:

● The TxE bit is set by hardware with an interrupt if the ITEVTEN and the ITBUFEN bits
are set.

If TxE is set and a data was not written in the DR register before the end of the next data
transmission, the BTF bit is set and the interface waits until BTF is cleared, by reading the
SR1 register and then writing to the DR register, stretching SCL low.

Figure 19. Transfer sequence diagram for slave transmitter

1. EV1 and EV3-1 events stretch SCL low until the end of the corresponding software sequence.

2. EV3 software sequence must be performed before the end of the current byte transfer. In case EV3
software sequence can not be managed before the end of the current byte transfer, it is recommended to
use BTF instead of TXE with the drawback of slowing the communication.

7-bit slave transmitter:

10-bit slave transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV1: ADDR =1, cleared by reading SR1 register followed by reading SR3.
EV3-1: TxE=1, shift register empty, data register empty, write Data1 in DR.
EV3: TxE=1, shift register not empty, data register empty, cleared by writing DR.
EV3-2: AF=1, AF is cleared by writing ‘0’ in AF bit of SR2 register.

S Address A Data1 A Data2 A
.....

DataN NA P
EV1 EV3-1 EV3 EV3 EV3 EV3-2

S Header A Address A

EV1

Sr Header A Data1 A
.

DataN NA P
EV1 EV3_1 EV3 EV3 EV3-2

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 103/266

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set by hardware and an interrupt is generated if the ITEVTEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared, by reading the SR1
register and then reading the DR register, stretching SCL low (see Figure 20 Transfer
sequencing).

Figure 20. Transfer sequence diagram for slave receiver

1. EV1 event stretches SCL low until the end of the corresponding software sequence.

2. EV2 software sequence must be performed before the end of the current byte transfer

3. See also: Note 7 on page 121

Closing slave communication

After the last data byte is transferred, a Stop condition is generated by the master. The
interface detects this condition and sets the STOPF bit and generates an interrupt if the
ITEVTEN bit is set.

Then the interface waits for a read of the SR1 register followed by a write to the CR2 register
(see Figure 20 Transfer sequencing EV4).

7-bit Slave receiver:

10-bit Slave receiver:

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV1: ADDR =1, cleared by reading SR1 register followed by reading SR3.
EV2: RxNE=1, cleared by reading DR register.
EV4: STOPF=1, cleared by reading SR1 register followed by writing CR2 register

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Inter-integrated circuit (I2C) interface RM0013

104/266 Doc ID 14400 Rev 5

14.4.2 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.
Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

● Program the peripheral input clock in I2C_FREQR Register in order to generate correct
timings

● Configure the clock control registers

● Configure the rise time register

● Program the I2C_CR1 register to enable the peripheral

● Set the START bit in the I2C_CR2 register to generate a Start condition

The peripheral input clock frequency must be at least:

● 1 MHz in Standard mode

● 4 MHz in Fast mode

Start condition

Setting the START bit causes the interface to generate a Start condition and to switch to
Master mode (MSL bit set) when the BUSY bit is cleared.

Note: In master mode, setting the START bit causes the interface to generate a Re-Start condition
at the end of the current byte transfer.

Once the Start condition is sent:

● The SB bit is set by hardware and an interrupt is generated if the ITEVTEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 21 & Figure 22 Transfer sequencing EV5).

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 105/266

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

● In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 21 & Figure 22 Transfer sequencing
EV9).

The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.
Then the master waits for a read of the SR1 register followed by a read in the SR3
register (see Figure 21 & Figure 22 Transfer sequencing EV6).

● In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read in the SR3
register (see Figure 21 & Figure 22 Transfer sequencing EV6).

The master can decide to enter Transmitter or Receiver mode depending on the LSB of
the slave address sent.

● In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

● In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header (11110xx0) and then the
slave address, (where xx denotes the two most significant bits of the address).

– To enter Receiver mode, a master sends the header (11110xx0) and then the
slave address. Then it should send a repeated Start condition followed by the
header (11110xx1), (where xx denotes the two most significant bits of the
address).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written in the DR register, (see Figure 21 Transfer
sequencing EV8_1).

When the acknowledge pulse is received:

● The TxE bit is set by hardware and an interrupt is generated if the ITEVTEN and
ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the next
data transmission, BTF is set and the interface waits until BTF is cleared, by reading the
SR1 register and then writing to the DR register, stretching SCL low.

Inter-integrated circuit (I2C) interface RM0013

106/266 Doc ID 14400 Rev 5

Closing the communication

After writing the last byte to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 21 Transfer sequencing EV8_2). The interface goes
automatically back to slave mode (MSL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Figure 21. Transfer sequence diagram for master transmitter

1. EV5, EV6, EV9, EV8_1 and EV8_2 events stretch SCL low until the end of the corresponding software sequence.

2. EV8 software sequence must be performed before the end of the current byte transfer. In case EV8 software sequence can
not be managed before the end of the current byte transfer, it is recommended to use BTF instead of TXE with the
drawback of slowing the communication.

7-bit Master Transmitter:

10-bit Master Transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR3.
EV8_1: TxE=1, shift register empty, data register empty, write DR register.
EV8: TxE=1, shift register not empty, data register empty, cleared by writing DR register.
EV8_2: TxE=1, BTF = 1, Program STOP request. TxE and BTF are cleared by HW by stop condition
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.
See also: Note 7 on page 121

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8_1 EV8 EV8 EV8 EV8_2

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8_1 EV8 EV8 EV8_2

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 107/266

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set and an interrupt is generated if the ITEVTEN and ITBUFEN bits are
set (see Figure 22 Transfer sequencing EV7).

If the RxNE bit is set and the data in the DR register was not read before the end of the next
data reception, the BTF bit is set by hardware and the interface waits for the BTF bit to be
cleared by reading I2C_SR1 and then I2C_DR, stretching SCL low.

Closing the communication

Method 1: This method is for the case when the I2C is used with interrupts that have the
highest priority in the application.

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Re-Start condition.

● In order to generate the non-acknowledge pulse after the last received data byte, the
ACK bit must be cleared just after reading the second last data byte (after second last
RxNE event).

● In order to generate the Stop/Re-Start condition, software must set the STOP/ START
bit just after reading the second last data byte (after the second last RxNE event).

● In case a single byte is to be received, the Acknowledge deactivation and the STOP
condition generation are made just after EV6 (in EV6-1 just after ADDR is cleared).

After the Stop condition generation, the interface goes automatically back to slave mode
(MSL bit cleared).

Inter-integrated circuit (I2C) interface RM0013

108/266 Doc ID 14400 Rev 5

Figure 22. Method 1: transfer sequence diagram for master receiver

1. If the DR and shift registers are full, the next data reception (I2C clock generation for slave) is performed after the EV7
event is cleared. In this case, EV7 does not overlap with data reception.

1. If a single byte is received, it is NA.

2. EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

3. EV7 software sequence must be completed before the end of the current byte transfer.In case EV7 software sequence can
not be managed before the current byte end of transfer, it is recommended to use BTF instead of RXNE with the drawback
of slowing the communication.

4. The EV6_1 or EV7_1 software sequence must be completed before the ACK pulse of the current byte transfer.

5. See also: Note 7 on page 121.

Method 2: This method is for the case when the I2C is used with interrupts that do not have
the highest priority in the application or when the I2C is used with polling.

With this method:

● DataN_2 is not read, so that after DataN_1, the communication is stretched (both
RxNE and BTF are set).

● Then, the ACK bit must be cleared before reading DataN-2 in DR to make sure this bit
has been cleared before the DataN Acknowledge pulse.

● After that, just after reading DataN_2, software must set the STOP/ START bit and read
DataN_1. After RxNE is set, read DataN.

This is illustrated in the following figure:

7-bit Master Receiver:

10-bit Master Receiver

Legend: S = Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)
EV5: SB=1, cleared by reading SR1 register followed by writing DR register.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR3. In 10-bit master receiver mode, this se-
quence should be followed by writing CR2 with START = 1.
EV6_1: no associated flag event, used for 1 byte reception only. Program ACK=0 and STOP=1 after clearing AD-
DR.
EV7: RxNE=1, cleared by reading DR register.
EV7_1: RxNE=1, cleared by reading DR register, program ACK=0 and STOP request
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

S Address A Data1 A Data2 A(1)

1. In case of a single byte to be received, it is a NACK

.....
DataN NA P

EV5 EV6 EV6_1 EV7 EV7 EV7_1 EV7

S Header A Address A

EV5 EV9 EV6

Sr Header A Data1 A
.....

DataN NA P

EV5 EV6 EV6_1 EV7 EV7_1 EV7

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 109/266

Figure 23. Method 2: transfer sequence diagram for master receiver when N >2

1. EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

2. EV7 software sequence must be completed before the end of the current byte transfer. In case EV7
software sequence can not be managed before the current byte end of transfer, it is recommended to use
BTF instead of RXNE, with the drawback of slowing the communication.

When 3 bytes remain to be read:

● RxNE = 1 => Nothing (DataN-2 not read).

● DataN-1 received

● BTF = 1 because both shift and data registers are full: DataN-2 in DR and DataN-1 in
the shift register => SCL tied low: no other data will be received on the bus.

● Clear ACK bit

● Read DataN-2 in DR => This launches the DataN reception in the shift register

● DataN received (with a NACK)

● Program START/STOP

● Read DataN-1

● RxNE = 1

● Read DataN

AAddressS

EV5 EV6

AData1 AData2

EV7 EV7

ADataN-2 ADataN-1

EV7_2

NADataN

EV7

P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.
EV6: ADDR1, cleared by reading SR1 register followed by reading SR3.
In 10-bit master receiver mode, this sequence should be followed by writing CR2 with START = 1.
EV7: RxNE=1, cleared by reading DR register
EV7_2: BTF = 1, DataN-2 in DR and DataN-1 in shift register, program ACK = 0, Read DataN-2 in DR.
Program STOP = 1, read DataN-1.

7- bit master receiver

10- bit master receiver

AHeaderS

EV5 EV9

AData1 AData2

EV7 EV7

ADataN-2 ADataN-1

EV7_2

NADataN

EV7

P

AAddress

EV6

AHeaderSr

EV5 EV6

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

EVx = Event (with interrupt if ITEVFEN = 1)

Inter-integrated circuit (I2C) interface RM0013

110/266 Doc ID 14400 Rev 5

The procedure described above is valid for N>2. The cases where a single byte or two bytes
are to be received should be handled differently, as described below:

● Case of a single byte to be received:

– In the ADDR event, clear the ACK bit.

– Clear ADDR

– Program the STOP/START bit.

– Read the data after the RxNE flag is set.

● Case of two bytes to be received:

– Set POS and ACK

– Wait for the ADDR flag to be set

– Clear ADDR

– Clear ACK

– Wait for BTF to be set

– Program STOP

– Read DR twice

Figure 24. Method 2: transfer sequence diagram for master receiver when N=2

1. EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

2. EV6_1 software sequence must be completed before the ACK pulse of the current byte transfer.

AAddressS

EV5 EV6

AData1 Data2

EV7_3

NA P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.
EV6: ADDR1, cleared by reading SR1 register followed by reading SR3.
In 10-bit master receiver mode, this sequence should be followed by writing CR2 with START = 1.
EV6_1: No associated flag event. The acknowledge should be disabled just after EV6, that is after ADDR is cleared.

EVx = Event (with interrupt if ITEVFEN = 1)

EV6_1

EV7_3: BTF = 1, program STOP = 1, read DR twice (Read Data1 and Data2) just after programming the STOP.

7- bit master receiver

10- bit master receiver

AHeaderS

EV5 EV9

AAddress

EV6

AData1 Data2

EV7_3

NA P

EV6_1

AHeaderSr

EV5 EV6

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 111/266

Figure 25. Method 2: transfer sequence diagram for master receiver when N=1

1. EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

2. EV6_3 software sequence must be completed before the ACK pulse of the current byte transfer.

AAddressS

EV5

NAData1

EV7

P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.

EV6_3: ADDR = 1, program ACK = 0, clear ADDR by reading SR1 register followed by reading SR3 register, program

 .

EV6_3

STOP =1 just after ADDR is cleared.

10- bit master receiver

AHeaderS

EV5 EV9

AAddress

EV6

7- bit master receiver

NAData1

EV7

P

EV6_3

AHeaderSr

EV5

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

EVx = Event (with interrupt if ITEVFEN = 1)

EV7: RxNE =1, cleared by reading DR register.

EV6: ADDR =1, cleared by reading SR1 resister followed by reading SR3 register.

Inter-integrated circuit (I2C) interface RM0013

112/266 Doc ID 14400 Rev 5

14.4.3 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects an external stop or a start condition during
an address or data transfer. In this case:

● The BERR bit is set and an interrupt is generated if the ITERREN bit is set

● In the case of the slave: data are discarded and the lines are released by hardware:

– In the case of a misplaced start, the slave considers it is a restart and waits for an
address or a stop condition.

– In the case of a misplaced stop, the slave reacts in the same way as for a stop
condition and the lines are released by hardware.

● In the case of the master: the lines are not released and there is no effect in the state of
the current transmission: software can decide if it wants to abort the current
transmission or not.

Acknowledge failure (AF)

This error occurs when the interface detects a non-acknowledge bit. In this case,

● The AF bit is set and an interrupt is generated if the ITERREN bit is set

● A transmitter which receives a NACK must reset the communication:

– If slave: Lines are released by hardware

– If master: A stop condition or repeated startmust be generated by software

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case,

● The ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set).

● The I2C interface goes automatically back to slave mode (the MSL bit is cleared)

● When the I²C loses the arbitration, it is not able to acknowledge its slave address in the
same transfer, but it can acknowledge it after a repeated start from the master.

● Lines are released by hardware

Overrun/underrun error (OVR)

An Overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE = 1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

● The last received byte is lost

● In case of overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 113/266

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

● The same byte in the DR register will be sent again

● The user should make sure that data received on the receiver side during an underrun
error is discarded and that the next bytes are written within the clock low time specified
in the I2C bus standard.

● For the first byte to be transmitted, the DR must be written after ADDR is cleared and
before the first SCL rising edge. If it is not possible, the receiver must discard the first
data.

14.4.4 SDA/SCL line control

● If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to read SR1 and then write the
byte in the Data register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read SR1 and then read the byte in the
Data Register or write to CR2(both buffer and shift register are full).

● If clock stretching is disabled in Slave mode:

– Overrun error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

– Write Collision not managed.

14.5 I2C low power modes

Table 25. I2C interface behavior in low power modes

Mode Description

Wait
No effect on I2C interface.
I2C interrupts cause the device to exit from Wait mode.

Halt

In slave mode: Communication is reset, except for configuration registers. Device is in
slave mode.
Wakeup from Halt interrupt is generated if ITEVTEN = 1 and address matched (including
allowed headers).
The matched address is not acknowledged in Halt mode so the master has to send it
again when the CPU is woken up to receive an acknowledge.
If NOSTRETCH = 0, SCLH will be stretched after acknowledge pulse in Halt mode until
WUFH is cleared by software;
None of the flags are set by the address which wakes up the CPU.

In master mode: Communication is frozen until the CPU is woken up. Wakeup from Halt
flag and interrupt are generated if ITEVTEN=1 and there is a HALT instruction.

Note: It is forbidden to enter Halt mode while a communication is on going.

Inter-integrated circuit (I2C) interface RM0013

114/266 Doc ID 14400 Rev 5

14.6 I2C interrupts

Figure 26. I2C interrupt mapping diagram

Table 26. I2C Interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

Start bit sent (Master) SB

ITEVTEN

Yes

No

Address sent (Master) or Address matched
(Slave)

ADDR

10-bit header sent (Master) ADD10

Stop received (Slave) STOPF

Data byte transfer finished BTF

Wakeup from Halt WUFH ITEVTEN Yes

Receive buffer not empty RxNE ITEVTEN
and

ITBUFEN

No

Transmit buffer empty TxE

Bus error BERR

ITERREN
Arbitration loss (Master) ARLO

Acknowledge failure AF

Overrun/underrun OVR

ADDR

SB

ADD10

WUFH
it_event

ARLO

BERR

AF

OVR

ITERREN

it_error

ITEVTEN

STOPF

RxNE

TxE

BTF

ITBUFEN

I2C global interrupt

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 115/266

14.7 I2C registers

14.7.1 Control register 1 (I2C_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

NOSTRETCH ENGC Reserved PE

rw rw rw

Bit 7 NOSTRETCH: Clock stretching disable (Slave mode)
This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until it is
reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General call enable
0: General call disabled. Address 0x00 is NACKed.
1: General call enabled. Address 0x00 is ACKed.

Bits 5:1 Reserved, read as 0.

Bit 0 PE: Peripheral enable

0: Peripheral disable
1: Peripheral enable: the corresponding I/Os are selected as alternate functions.

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the end of the
current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

Inter-integrated circuit (I2C) interface RM0013

116/266 Doc ID 14400 Rev 5

14.7.2 Control register 2 (I2C_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

SWRST reserved POS ACK STOP START

rw r rw rw rw rw

Bit 7 SWRST: Software reset

When set, the I2C is at reset state. Before resetting this bit, make sure the I2C lines are released and
the bus is free.

0: I2C Peripheral not at reset state
1: I2C Peripheral at reset state

Note: This bit can be used in case the BUSY bit is set to ‘1’ when no stop condition has been
detected on the bus.

Bits 6:4 Reserved, read as ‘0’

Bit 3 POS: Acknowledge position (for data reception).

This bit is set and cleared by software and cleared by hardware when PE=0.
0: ACK bit controls the (N)ACK of the current byte being received in the shift register.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.

Note: The POS bit is used when the procedure for reception of 2 bytes (see Method 2: transfer
sequence diagram for master receiver when N=2) is followed. It must be configured before data
reception starts. In this case, to NACK the 2nd byte, the ACK bit must be cleared just after
ADDR is cleared.

Bit 2 ACK: Acknowledge enable
This bit is set and cleared by software and cleared by hardware when PE=0.

0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 1 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is detected, set by
hardware when a timeout error is detected.

● In Master mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.

● In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Bit 0 START: Start generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
● In Master mode:

0: No Start generation
1: Repeated start generation

● In Slave mode:
0: No Start generation
1: Start generation when the bus is free

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 117/266

Note: When STOP or START is set, the user must not perform any write access to I2C_CR2
before the control bit is cleared by hardware. Otherwise, a second STOP or START request
may occur.

14.7.3 Frequency register (I2C_FREQR)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

reserved
FREQ[5:0]

rw rw rw rw rw rw

Bits 7:6 Reserved, read as ‘0’.

Bits 5:0 FREQ[5:0] Peripheral clock frequency. (1)

Input clock frequency must be programmed to generate correct timings:
The allowed range is between 1 MHz and 16 MHz
000000: not allowed
000001: 1 MHz
000010: 2 MHz
...
010000: 16 MHz
Higher values: not allowed.

1. The minimum peripheral clock frequencies for respecting the I2C bus timings are:
1 MHz for standard mode and 4 MHz for fast mode

Inter-integrated circuit (I2C) interface RM0013

118/266 Doc ID 14400 Rev 5

14.7.4 Own address register LSB (I2C_OARL)

Address offset: 0x03

Reset value: 0x00

14.7.5 Own address register MSB (I2C_OARH)

Address offset: 0x04

Reset value: 0x00

7 6 5 4 3 2 1 0

ADD[7:1] ADD0

rw rw rw rw rw rw rw rw

Bits 7:1 ADD[7:1] Interface address

bits 7:1 of address

Bit 0 ADD0 Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

7 6 5 4 3 2 1 0

ADDMODE ADDCONF reserved ADD[9:8] reserved

rw rw r r r rw rw r

Bit 7 ADDMODE Addressing mode (Slave mode)
0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 6 ADDCONF Address mode configuration
This bit must set by software (must always be written as ‘1’).

Bits 5:3 Reserved, read as ‘0’.

Bits 2:1 ADD[9:8] Interface address

10-bit addressing mode: bits 9:8 of address.

Bit 0 Reserved, read as ‘0’.

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 119/266

14.7.6 Data register (I2C_DR)

Address offset: 0x06

Reset value: 0x00

7 6 5 4 3 2 1 0

DR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DR[7:0] Data register (1)(2)(3)

Byte received or to be transmitted to the bus.

● Transmitter mode: Byte transmission starts automatically when a byte is written in the DR
register. A continuous transmit stream can be maintained if the next data to be transmitted is put
in DR once the transmission is started (TxE=1)

● Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream can be
maintained if DR is read before the next data is received (RxNE=1).

1. In slave mode, the address is not copied into DR.

2. Write collision is not managed (DR can be written if TxE=0).

3. If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so cannot be read.

Inter-integrated circuit (I2C) interface RM0013

120/266 Doc ID 14400 Rev 5

14.7.7 Status register 1 (I2C_SR1)

Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0

TxE RxNE Reserved STOPF ADD10 BTF ADDR SB

r r r r r r r r

Bit 7 TxE: Data register empty (transmitters) (1)

0: Data register not empty
1: Data register empty

● Set when DR is empty in transmission. TxE is not set during address phase.

● Cleared by software writing to the DR register or by hardware after a start or a stop condition or
when PE=0.

Note: TxE cannot be cleared by writing the first data in transmission or by writing a data when the
BTF bit is set as in both cases, the DR register is still empty.

Bit 6 RxNE: Data register not empty (receivers) (2) (3)

0: Data register empty
1: Data register not empty

● Set when data register is not empty in receiver mode. RxNE is not set during address phase.

● Cleared by software reading or writing the DR register or by hardware when PE=0.

Note: RxE cannot be cleared by reading a data when the BTF bit is set as the DR register is still full in
this case.

Bit 5 Reserved, read as ‘0’.

Bit 4 STOPF: Stop detection (Slave mode) (4)

0: No Stop condition detected
1: Stop condition detected

● Set by hardware when a Stop condition is detected on the bus by the slave after an acknowledge
(if ACK=1).

● Cleared by software reading the SR1 register followed by a write in the CR2 register, or by
hardware when PE=0

Bit 3 ADD10: 10-bit header sent (Master mode) (5)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).

● Set by hardware when the master has sent the first byte in 10-bit address mode.
● Cleared by software reading the SR1 register followed by a write in the DR register of the second

address byte, or by hardware when PE=0.

Bit 2 BTF: Byte transfer finished (6)(7)

0: Data Byte transfer not done
1: Data Byte transfer succeeded

● Set by hardware when NOSTRETCH=0 and:
– In reception when a new byte is received (including ACK pulse) and DR has not been read

yet (RxNE=1).
– In transmission when a new byte should be sent and DR has not been written yet (TxE=1).

● Cleared by software reading SR1 followed by either a read or write in the DR register or by
hardware after a start or a stop condition in transmission or when PE=0.

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 121/266

Bit 1 ADDR: Address sent (master mode)/matched (slave mode) (7)

This bit is cleared by software reading SR1 register followed reading SR3, or by hardware when PE=0.

● Address matched (Slave)
0: Address mismatched or not received.
1: Received address matched.

– Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call or a SMBus is recognized. (when enabled depending on
configuration).

● Address sent (Master)
0: No end of address transmission
1: End of address transmission

– For 10-bit addressing, the bit is set after the ACK of the 2nd byte.

– For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start Bit (Master mode) (7)

0: No Start condition
1: Start condition generated.

– Set when a Start condition generated.

– Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

1. The interrupt will be generated when DR is copied into shift register after an ACK pulse. If a NACK is received, copy is not
done and TxE is not set.

2. The interrupt will be generated when Shift register is copied into DR after an ACK pulse.

3. RxNE is not set in case of ARLO event.

4. The STOPF bit is not set after a NACK reception.

5. The ADD10 bit is not set after a NACK reception.

6. The BTF bit is not set after a NACK reception, or in case of an ARLO event.

7. Due to timing constraints, when in standard mode if CCR is less than 9 (i.e. with peripheral clock below 2 MHz) with
fMASTER = fCPU and the event interrupt disabled, the following procedure must be followed:
modify the reset sequence in order to insert at least 5 cycles between each operations in the flag clearing sequence. For
example, when fMASTER = fCPU = 1 MHz, use the following sequence to poll the SB bit:
_label_wait: BTJF I2C_SR1,SB,_label_wait
NOP ;
NOP;
NOP ;
NOP
NOP
LD A,I2C_SR3 ; once executed, the SB bit is then cleared.

Inter-integrated circuit (I2C) interface RM0013

122/266 Doc ID 14400 Rev 5

14.7.8 Status register 2 (I2C_SR2)

Address offset: 0x08

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved WUFH Reserved OVR AF ARLO BERR

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 7:6 Reserved, always read as 0.

Bit 5 WUFH: Wakeup from Halt
0: no wakeup from Halt mode
1: 7-bit address or header match in Halt mode (slave mode) or Halt entered when in master mode.

Note: This bit is set asynchronously in slave mode (during HALT mode). It is set only if ITEVTEN = 1.

– cleared by software writing 0, or by hardware when PE=0.

Bit 4 Reserved, always read as 0.

Bit 3 OVR: Overrun/underrun
0: No overrun/underrun
1: Overrun or underrun

– Set by hardware in slave mode when NOSTRETCH=1 and:

– In reception when a new byte is received (including ACK pulse) and the DR register has not
been read yet. New received byte is lost.

– In transmission when a new byte should be sent and the DR register has not been written
yet. The same byte is sent twice.

Cleared by software writing 0, or by hardware when PE=0.

Note: if the DR write occurs very close to the SCL rising edge, the sent data is unspecified and a hold
timing error occurs.

Bit 2 AF: Acknowledge failure.

0: No acknowledge failure
1: Acknowledge failure

– Set by hardware when no acknowledge is returned.

– Cleared by software writing 0, or by hardware when PE=0.

Bit 1 ARLO: Arbitration lost (master mode)

0: No Arbitration lost detected
1: Arbitration lost detected
Set by hardware when the interface loses the arbitration of the bus to another master.

– Cleared by software writing 0, or by hardware when PE=0.
After an ARLO event the interface switches back automatically to Slave mode (MSL=0).

Bit 0 BERR: Bus error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

– Set by hardware when the interface detects a misplaced Start or Stop condition
– Cleared by software writing 0, or by hardware when PE=0.

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 123/266

14.7.9 Status register 3 (I2C_SR3)

Address offset: 0x09

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved GENCALL Reserved TRA BUSY MSL

r r r r r r r r

Bits 7:5 Reserved, read as ‘0’.

Bit 4 GENCALL: General call header (Slave mode)
0: No general call
1: General call header received when ENGC=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, read as ‘0’.

Bit 2 TRA: Transmitter/receiver

0: Data bytes received
1: Data bytes transmitted
This bit is set depending on R/W bit of address byte, at the end of total address phase.
It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start condition,
loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus busy

0: No communication on the bus
1: Communication ongoing on the bus

– Set by hardware on detection of SDA or SCL low
– cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when the
interface is disabled (PE=0).

Bit 0 MSL: Master/Slave

0: Slave mode
1: Master mode

– Set by hardware as soon as the interface is in Master mode (SB=1).
– Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration

(ARLO=1), or by hardware when PE=0.

Inter-integrated circuit (I2C) interface RM0013

124/266 Doc ID 14400 Rev 5

14.7.10 Interrupt register (I2C_ITR)

Address offset: 0x0A

Reset value: 0x00

7 6 5 4 3 2 1 0

reserved ITBUFEN ITEVTEN ITERREN

r r r r r rw rw rw

Bits 7:3 Reserved, read as ‘0’.

Bit 2 ITBUFEN: Buffer interrupt enable
0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1:TxE = 1 or RxNE = 1 generates Event interrupt.

Bit 1 ITEVTEN: Event interrupt enable

0: Event interrupt disabled
1: Event interrupt enabled

This interrupt is generated when:

● SB = 1 (Master)
● ADDR = 1 (Master/Slave)

● ADD10= 1 (Master)

● STOPF = 1 (Slave)
● BTF = 1 with no TxE or RxNE event

● TxE event to 1 if ITBUFEN = 1

● RxNE event to 1if ITBUFEN = 1
● WUFH = 1 (asynchronous interrupt to wakeup from Halt)

Bit 0 ITERREN: Error interrupt enable
0: Error interrupt disabled
1: Error interrupt enabled

This interrupt is generated when:

● BERR = 1

● ARLO = 1
● AF = 1

● OVR = 1

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 125/266

14.7.11 Clock control register low (I2C_CCRL)

Address offset: 0x02

Reset value: 0x0B

7 6 5 4 3 2 1 0

CCR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR[7:0] Clock control register (Master mode)

Controls the SCLH clock in Master mode.

● Standard mode:
Period(I2C) = 2 * CCR * tCK
thigh = CCR * tCK
tlow = CCR * tCK

● Fast mode:
If DUTY = 0:
Period(I2C) = 3* CCR * tCK
thigh = CCR * tCK
tlow = 2 * CCR * tCK
If DUTY = 1: (to reach 400 kHz)
Period(I2C) = 25 * CCR * tCK
thigh = 9 * CCR * tCK
tlow = 16 * CCR * tCK

Note: tCK = 1/ fCK. fCK is the input clock to the peripheral configured using clock control register.

The minimum allowed value is 04h, except in FAST DUTY mode where the minimum allowed
value is 0x01.

thigh = tr(SCL) + tw(SCLH). See device datasheet for the definitions of parameters
tlow = tf(SCL) + tw(SCLL). See device datasheet for the definitions of parameters

I2C communication speed, fSCL = 1/(Thigh + Tlow)

These timings are without filters.

Inter-integrated circuit (I2C) interface RM0013

126/266 Doc ID 14400 Rev 5

14.7.12 Clock control register high (I2C_CCRH)

Address offset: 0x0C

Reset value: 0x00

Note: The CCR registers must be configured only when the I²C is disabled (PE=0).

fCK = multiple of 10 MHz is required to generate Fast clock at 400 kHz. This cannot be
reached with STM8L101.

fCK ≥ 1 MHz is required to generate Standard clock at 100 kHz.

7 6 5 4 3 2 1 0

F/S DUTY reserved CCR[11:8]

rw rw r rw

Bit 7 F/S: I2C master mode selection

0: Standard mode I2C
1: Fast mode I2C

Bit 6 DUTY: Fast mode duty cycle
0: Fast mode tlow/thigh = 2
1: Fast mode tlow/thigh = 16/9 (see CCR)

Bits 5:4 Reserved, must be kept cleared.

Bits 3:0 CCR[11:8]: Clock control register in Fast/Standard mode (Master mode)(1)

Controls the SCLH clock in master mode.

● Standard mode:
Period(I2C) = 2 * CCR * tCK
thigh = CCR * tCK
tlow = CCR * tCK

● Fast mode:
If DUTY = 0:
Period(I2C) = 3 * CCR * tCK
thigh = CCR * tCK
tlow = 2 * CCR * tCK
If DUTY = 1: (to reach 400 kHz)
Period(I2C) = 25 * CCR * tCK
thigh = 9 * CCR * tCK
tlow = 16 * CCR * tCK
For instance: in standard mode, to generate a 100 kHz SCL frequency:
If FREQR = 08, tCK = 125 ns so CCR must be programmed with 0x28
(0x28 <=> 40 x 125 ns = 5000 ns.)

Note: thigh = tr(SCL) + tw(SCLH). See device datasheet for the definitions of parameters

tlow = tf(SCL) + tw(SCLL). See device datasheet for the definitions of parameters

These timings are without filters.

1. Refer to Table 27: I2C_CCR values for SCL frequency table (fMASTER = 10 MHz or 16 MHz) on page 127

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 127/266

Table 27. I2C_CCR values for SCL frequency table (fMASTER = 10 MHz or 16 MHz(1))

1. The following table gives the values to be written in the I2C_CCR register to obtain the required I²C SCL line frequency

I2C
Speed

I2C
frequency

(fSCL)
fMASTER = 10 MHz fMASTER = 16 MHz

in Hz
Actual

(Hz)
% Error

(%)
I2C_CCR

(h)

Duty
cycle

bit

Actual
(Hz)

% Error
(%)

I2C_CCR
(h)

Duty cycle
bit

Fast
speed

400000 400000 0 1 1 410256.41 2.56 D 0

370000 370370.37 0.10 9 0 380952.38 2.96 E 0

350000 370370.37 5.82 9 0 355555.56 1.59 F 0

320000 333333.33 4.17 A 0 320000 0 2 1

300000 303030.30 1.01 B 0 313725.49 4.57 11 0

270000 277777.78 2.88 C 0 280701.75 3.96 13 0

250000 256410.26 2.56 D 0 253968.25 1.59 15 0

220000 222222.22 1.01 F 0 222222.22 1.01 18 0

200000 200000 0 2 1 205128.20 2.56 1A 0

170000 175438.60 3.20 13 0 172043.01 1.20 1F 0

150000 151515.15 1.01 16 0 152380.95 1.59 23 0

120000 123456.79 2.88 1B 0 121212.12 1.01 2C 0

Standard
speed

100000 100000 0 32

No impact

100000 0 50

No impact
50000 50000 0 64 50000 0 A0

30000 30120.48 0.40 A6 30075.19 0.25 10A

20000 20000 0 FA 20000 0 190

Inter-integrated circuit (I2C) interface RM0013

128/266 Doc ID 14400 Rev 5

14.7.13 TRISE register (I2C_TRISER)

Address offset: 0x0D

Reset value: 0x02

7 6 5 4 3 2 1 0

Reserved TRISE[5:0]

r r rw rw rw rw rw rw

Bits 7:6 Reserved, read as ‘0’.

Bits 5:0 TRISE[5:0] Maximum rise time in Fast/Standard mode (Master mode)
These bits must be programmed with the maximum SCL rise time given in the I2C bus specification,
incremented by 1.
For instance: in standard mode, the maximum allowed SCL rise time is 1000 ns.
If the value in the I2C_FREQR register = 08h, then tCK = 125 ns therefore the TRISE[5:0] bits must
be programmed with 0x09.
(1000 ns / 125 ns = 8 + 1)
The filter value can also be added to TRISE[5:0].
If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order to
respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

RM0013 Inter-integrated circuit (I2C) interface

Doc ID 14400 Rev 5 129/266

14.7.14 I2C register map and reset values

Table 28. I2C register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00
I2C_CR1
Reset value

NO STRETCH
0

ENGC
0

-
0

-
0

-
0

-
0

-
0

PE
0

0x01
I2C_CR2
Reset value

SWRST
0

-
0

-
0

-
0

POS
0

ACK
0

STOP
0

START
0

0x02
I2C_FREQR
Reset value

-
0

-
0

FREQ5
0

FREQ4
0

FREQ3
0

FREQ2
0

FREQ1
0

FREQ0
0

0x03
I2C_OARL
Reset value

ADD7
0

ADD6
0

ADD5
0

ADD4
0

ADD3
0

ADD2
0

ADD1
0

ADD0
0

0x04
I2C_OARH
Reset value

ADDMODE
0

ADDCONF
0

-
0

-
0

-
0

ADD9
0

ADD8
0

-
0

0x05 Reserved

0x06
I2C_DR
Reset value

DR7
0

DR6
0

DR5
0

DR4
0

DR3
0

DR2
0

DR1
0

DR0
0

0x07
I2C_SR1
Reset value

TxE
0

RxNE
0

-
0

STOPF
0

ADD10
0

BTF
0

ADDR
0

SB
0

0x08
I2C_SR2
Reset value

-
0

-
0

WUFH
0

-
0

OVR
0

AF
0

ARLO
0

BERR
0

0x09
I2C_SR3
Reset value

-
0

-
0

-
0

GENCALL
0

-
0

TRA
0

BUSY
0

MSL
0

0x0A
I2C_ITR
Reset value

-
0

-
0

-
0

--
0

--
0

ITBUFEN
0

ITEVTEN
0

ITERREN
0

0x0B
I2C_CCRL
Reset value

CCR7
0

CCR6
0

CCR5
0

CCR4
0

CCR3
0

CCR2
0

CCR1
0

CCR0
0

0x0C
I2C_CCRH
Reset value

FS
0

DUTY
0

-
0

-
0

CCR11
0

CCR10
0

CCR9
0

CCR8
0

0x0D
I2C_TRISER
Reset value

-
0

-
0

TRISE5
0

TRISE4
0

TRISE3
0

TRISE2
0

TRISE1
1

TRISE0
0

Infrared (IRTIM) interface RM0013

130/266 Doc ID 14400 Rev 5

15 Infrared (IRTIM) interface

15.1 Introduction
An infrared interface (IRTIM) can be used with an IR LED to perform remote control
functions.

To generate the infrared remote control signals, the IR interface must be enabled and TIM2
channel 1 (TIM2_OC1) and TIM3 channel 1 (TIM3_OC1) must be properly configured to
generate correct waveforms.

Figure 27. IR internal hardware connections with TIM2 and TIM3

15.2 Main features
All standard IR pulse modulation modes can be obtained by programming the two timer
output compare channels.
TIM 2 is used to generate the high frequency carrier signal, while TIM3 generates the
modulation envelope.

The infrared function is output on the TIM_IR pin. The activation of this function is done
through the IR_CR register. When the IR function is enabled by setting the IR_EN bit, the
standard TIM2_CC1 and TIM3_CC1 become automatically inactive (these pins may be
used as general purpose I/O pins or for other alternate functions).

The high sink LED driver capability (only available on the TIM_IR pin) can be activated
through the HS_EN bit in the IR_CR register and used to sink the high current needed to
directly control an infrared LED. When the pin is driving the LED in this mode, the other pin
input/output levels cannot be guaranteed. It is therefore recommended to program all other
device I/Os in input mode without interrupt before sending any infrared signal. The previous
function can be restored immediately after the infrared communication is completed.
When the high sink capability of the pin is not used (or the current is limited to the standard
I/O capabilities) all other pins of the device can be used normally.

TIM2_CH1

TIM3_CH1

IRTIM IRTIM_OUT

RM0013 Infrared (IRTIM) interface

Doc ID 14400 Rev 5 131/266

15.3 IRTIM register

15.3.1 Control register (IR_CR)

Reset value: 0x00

15.3.2 IRTIM register map and reset values

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved HS_EN IR_EN

rw rw rw rw rw rw rw rw

Bits 7:2 Reserved. Must be kept cleared

Bit 1 HS_EN: High Sink LED driver capability enable.

0: High Sink LED driver capability disabled.
1: High Sink LED driver capability enabled.

When activated, this pin can sink 20 mA min. with a power supply down to 2 V. Refer to “Output driving
current” table in the datasheet.

Bit 0 IR_EN: Infrared output enable.

This bit enables the IR output.

0: IR_TIM output disabled.
1: IR_TIM output enabled and provided to PA0 (TIM2 and TIM3 must have been previously
configured properly by software)

Table 29. IR register map

Address

offset
Register

name
7 6 5 4 3 2 1 0

0x00
IR_CR
Reset value

-
0

-
0

-
0

-
0

-
0

-
0

HS_EN
0

IR_EN
0

Timer overview RM0013

132/266 Doc ID 14400 Rev 5

16 Timer overview

The microcontroller has two types of TIM timers, two general purpose (TIM2/ TIM3), and
one basic timer (TIM4). They have different features but are based on a common
architecture. This makes it easier to design applications using the various timers (identical
register mapping, common basic features).

Although the timers do not share any resources, they can be linked together and
synchronized.

This section gives a comparison of the different timer features and glossary of internal timer
signal names.

Section 17: 16-bit general purpose timer (TIM2/TIM3) contains a full description of all the
various timer modes.

16.1 Timer feature comparison

Table 30. Timer characteristics

Symbol Parameter Min Typ Max Unit

tw(ICAP)in Input capture pulse time 2 tMASTER

tres(TIM) Timer resolution time 1 tMASTER

ResTIM

Timer resolution with 16-bit counter 16 bit

Timer resolution with 8-bit counter 8 bit

tCOUNTER
Counter clock period when internal clock is
selected

1 tMASTER

tMAX_COUNT

Maximum possible count with 16-bit counter 65,536 tMASTER

Maximum possible count with 8-bit counter 256 tMASTER

Table 31. Timer feature comparison

Timer
Counter
resol-
ution

Counter

type

Prescaler

factor

Capture/
compare

chan-
nels

Comple-
mentary
outputs

Repet-
ition

counter

External
trigger
input

External
break
input

Timer
synchr-

onization
/

chaining

TIM2

& TIM3
(general
purpose
timers)

16-bit Up/down
Any power of
2 from 1 to

128
2

None No

1 1

Yes

TIM4
(basic
timer)

8-bit Up
Any power of
2 from 1 to

32768
0 0 0

RM0013 Timer overview

Doc ID 14400 Rev 5 133/266

16.2 Glossary of timer signal names

Table 32. Glossary of internal timer signals

Internal signal name Description Related figures

BI Break interrupt
Figure 28: TIMx general block diagram on
page 136CCiI, CC1I, CC2I, CC3I, CC4I

Capture/compare
interrupt

CK_CNT Counter clock
Figure 32: Counter update when ARPE=0
(ARR not preloaded) with prescaler = 2 on
page 140

CK_PSC Prescaler clock

CNT_EN Counter enable

CNT_INIT Counter initialize
Figure 41: TI2 external clock connection
example on page 147

ETR
External trigger from
TIMx_ETR pin

Figure 43: External trigger input block on
page 148

ETRF External trigger filtered

ETRP
External trigger
prescaled

fMASTER

Timer peripheral clock
from clock controller
(CLK)

Figure 12: Clock structure on page 62

ICi, IC1, IC2 Input capture Figure 60: Input stage of TIM 1 channel 1
on page 161ICiPS, IC1PS, IC2PS Input capture prescaled

ITRx, ITR1, ITR2, ITR3
Internal trigger input
tied to TRGO of other
TIM timers

Figure 28: TIMx general block diagram on
page 136

MATCH1 Compare match

Figure 50: Trigger/master mode selection
blocks on page 153 and Section 17.7.2:
Control register 2 (TIMx_CR2) on
page 178

OCi, OC1, OC2 Timer output channel
Figure 17.5.5: Forced output mode on
page 165OCiREF, OC1REF, OC2REF

Output compare
reference signal

TGI Trigger interrupt
Figure 39: Clock/trigger controller block
diagram on page 146

TIi, TI1, TI2 Timer input

Figure 60: Input stage of TIM 1 channel 1
on page 161Figure 60: Input stage of TIM
1 channel 1 on page 161

TIiF, TI1F, TI2F Timer input filtered

TI1_ED
Timer input edge
detector

TIiFPx, TI1FP1, TI1FP2,
TI2FP1, TI2FP2

Timer input filtered
prescaled

TRC Trigger capture

Timer overview RM0013

134/266 Doc ID 14400 Rev 5

TRGI
Trigger input to
clock/trigger/slave
mode controller

Figure 40: Control circuit in normal mode,
fMASTER divided by 1 on page 147

TRGO
Trigger output tied to
trigger input INTx of
other timers

Figure 28: TIMx general block diagram on
page 136

UEV Update event Figure 32: Counter update when ARPE=0
(ARR not preloaded) with prescaler = 2 on
page 140UIF Update interrupt

Table 32. Glossary of internal timer signals (continued)

Internal signal name Description Related figures

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 135/266

17 16-bit general purpose timer (TIM2/TIM3)

17.1 Introduction
This chapter describes TIM2 and TIM3 which are identical timers and referred to as TIMx.

Each general purpose timer (TIMx) has a 16-bit up-down auto-reload counter driven by a
programmable prescaler.

In this section, the index i, may be 1 or 2 referring to the two capture/compare channels.

The timers may be used for a variety of purposes, including:

● Time base generation

● Measuring the pulse lengths of input signals (input capture)

● Generating output waveforms (output compare, PWM and One Pulse Mode)

● Interrupt capability on various events (capture, compare, overflow, break, trigger)

● Synchronization with other timers or external signals (external clock, reset, trigger and
enable)

These timers are ideally suited for a wide range of control applications, including those
requiring center-aligned PWM capability.

The timer clock can be sourced from internal clocks or from an external source selectable
through a configuration register.

17.2 TIMx main features
TIMx features include:

● 16-bit up, down, up/down counter auto-reload counter.

● 3-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any power of 2 between 1 and 128.

● Synchronization circuit to control the timer with external signals and to interconnect
several timers.

● 2 independent channels that can alternately be configured as:

– Input capture

– Output compare

– PWM generation (edge and center-aligned mode)

– One Pulse Mode output

● Break input to put the timer output signals in reset state or in a known state.

● Interrupt generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

– Break input

16-bit general purpose timer (TIM2/TIM3) RM0013

136/266 Doc ID 14400 Rev 5

Figure 28. TIMx general block diagram

Prescaler AutoReload RegisterUP-DOWN COUNTER

Capture/Compare 1 Register

Capture/Compare 2 Register

UEV

ETR

fMASTER

OC1REF

OC2REF

CK_PSC

IC1

IC2
Prescaler

Prescaler

IC2PS

IC1PS

CC1I

CC2I

TIMx_CH2

OC1

OC2

TIMx_BKIN

TIMx_TRIG

CK_CNT

UEV

TIME BASE UNIT

CLOCK/TRIGGER CONTROLLER

INPUT OUTPUT

CAPTURE COMPARE ARRAY

TI1

TI2
TIMx_CH2

TIMx_CH1

 STAGESTAGE

TIMx_CH1

INTx
TRGO from other TIM timers

TRGO to other TIM timers

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

interrupt

event (UEV) according to
control bit

to IR block

from Comparator

from Comparator

TRC

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 137/266

17.3 TIMx time base unit
The timer has a Time base unit that includes:

● 16-bit up/down counter

● 16-bit auto-reload register

● Prescaler

Figure 29. Time base unit

The 16-bit counter, the prescaler and the auto-reload register can be written or read by
software.

The auto-reload register is composed of a preload register plus a shadow register.

Writing to the auto-reload register can be done in two modes:

● Auto-reload preload enabled (ARPE bit set in the TIMx_CR1 register). In this mode,
when data is written to the autoreload register, it is kept in the preload register and
transferred into the shadow register at the next update event (UEV).

● Auto-reload preload disabled (ARPE bit cleared in the TIMx_CR1 register). In this
mode, when data is written to the autoreload register it is transferred into the shadow
register immediately.

An update event is generated:

● On a counter overflow or underflow.

● By software, setting the UG bit in the TIMx_EGR register.

● By an trigger event from the clock/trigger controller.

With preload enabled (ARPE=1), when an update event occurs: the auto-reload shadow
register is updated with the preload value (TIMx_ARR) and the buffer of the prescaler is
reloaded with the preload value (content of the TIMx_PSCR register).

The update event (UEV) can be disabled by setting the UDIS bit in the TIMx_CR1

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set.

Note: Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

17.3.1 Reading and writing to the 16-bit counter

There is no buffering when writing the counter. Both TIMx_CNTRH and TIMx_CNTRL can
be written at any time, so it is suggested not to write a new value into the counter while it is
running to avoid loading a wrong intermediate content.

Prescaler

Auto-Reload Register

16-bit Counter
CK_PSC CK_CNT

TIMx_PSCR TIMx_CNTRH,

TIMx_ARRH,

UEV
UIF

UEV

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

control bit

interrupt

event (UEV) according to

16-bit general purpose timer (TIM2/TIM3) RM0013

138/266 Doc ID 14400 Rev 5

An 8-bit buffer is implemented for the read. The user must read the MS byte first, then the
LS byte value is buffered automatically, as described in Figure 30. This buffered value
remains unchanged until the 16-bit read sequence is completed.

Note: Do not use the LDW instruction to read the 16-bit counter, because it reads the LS byte first,
and would return a wrong result.

Figure 30. 16-bit read sequence for the counter (TIMx_CNTR)

17.3.2 Write sequence for 16-bit TIMx_ARR register

16-bit values are loaded in the TIMx_ARR register through preload registers. This must be
performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte has been written. Do not use the LDW instruction, as this writes the
LS byte first, and would produce wrong results in this case.

17.3.3 Prescaler

The prescaler is based on a 7-bit counter controlled through a 3-bit register (in TIMx_PSCR
register). It can be changed on the fly as this control register is buffered. It can divide the
counter clock frequency by 1, 2, 4, 8, 16, 32, 64 or 128.

The counter clock frequency is calculated as follows:

fCK_CNT = fCK_PSC/2(PSCR[2:0])

The new prescaler value is taken into account in the following period (after the next counter
update event).

17.3.4 Up-counting mode

In up-counting mode, the counter counts from 0 to a user-defined compare value (content of
the TIMx_ARR register), then restarts from 0 and generates a counter overflow event, and
an update event (UEV) if the UDIS bit is 0 in the TIMx_CR1 register.

Figure 31 shows an example of this counting mode.

is buffered
Read

At t0

Read Returns the buffered
LS Byte value at t0At t0 +Dt

Other
instructions

Beginning of the sequence

Sequence completed

LS Byte

LS Byte

MS byte

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 139/266

Figure 31. Counter in up-counting mode

An update event can also be generated by setting the bit UG in the TIMx_EGR register (by
software or by using the trigger controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event will occur until UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescaler division factor does not change). In addition, if the URS bit (update request
selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV
but without setting the UIF flag (thus no interrupt request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR1 register) is set (depending on the URS bit):

The auto-reload shadow register is updated with the preload value (TIMx_ARR),

The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSCR
register).

Counter

TIMx_ARR

OverflowOverflow Overflow Overflow
0

16-bit general purpose timer (TIM2/TIM3) RM0013

140/266 Doc ID 14400 Rev 5

The following figures show two examples of the counter behavior for different clock
frequencies when TIMx_ARR=36h.

In Figure 32 the prescaler divider is set to 2, so the counter clock (CK_CNT) frequency is at
half the frequency of the the prescaler clock source (CK_PSC).

In Figure 32 the autoreload preload is disabled (ARPE=0), so the shadow register is
changed immediately and counter overflow occurs when upcounting reaches 36h. This
generates an update event.

Figure 32. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2

 CK_PSC

00

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER OVERFLOW

UPDATE EVENT (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER

Write a new value in TIMx_ARR

FF 36

New value transferred immediately in shadow register

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 141/266

In Figure 33 the prescaler divider is set to 1, so CK_CNT has the same frequency as
CK_PSC.

In Figure 33 autoreload preload is enabled (ARPE=1), so the next counter overflow occurs
at FFh. The new autoreload value register value of 36h is taken into account after the
overflow which generates an update event.

Figure 33. Counter update event when ARPE=1 (TIMx_ARR preloaded)

17.3.5 Down-counting mode

In down-counting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow and an update event (UEV) if the UDIS bit is 0 in the TIMx_CR1 register.

Figure 34 shows an example of this counting mode.

Figure 34. Counter in down-counting mode

An update event can also be generated by setting the bit UG in the TIMx_EGR register (by
software or by using the clock/trigger mode controller).

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event will occur until UDIS bit has been written to 0.

00

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER OVERFLOW

UPDATE EVENT (UEV)

01 02 03 04 05 06 07FB FC FD FE FFFA

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER FF 36

Write a new value in TIMx_ARR

 CK_PSC

New value transferred in shadow register
on counter overflow

Counter

Time

TIMx_ARR

UnderflowUnderflow Underflow Underflow0

16-bit general purpose timer (TIM2/TIM3) RM0013

142/266 Doc ID 14400 Rev 5

However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR1 register) is set (depending on the URS bit):

The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSCR
register),

The auto-reload shadow register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so
that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=36h.

In downcounting mode, preload is normally not used so that the new value is taken into
account in the next period (see Figure 35).

Figure 35. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2

 CK_PSC

36

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER UNDERFLOW

UPDATE EVENT (UEV)

35 34 33 32 31 30 2F05 04 03 02 0106

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER

Write a new value in TIMx_ARR

FF 36

New value transferred immediately in shadow register

00

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 143/266

Figure 36. Counter update when ARPE=1 (ARR preloaded), with prescaler = 1

17.3.6 Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) -1, generates a counter overflow event, then counts down to 0 and
generates a counter underflow event. Then it restarts counting from 0.

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The Figure 37 shows an example of this counting mode.

Figure 37. Counter in center-aligned mode

The update event is generated at each counter overflow and at each counter underflow.

Setting the bit UG in the TIMx_EGR register (by software or by using the clock/trigger mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The update event (UEV) can be disabled by software setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event will occur until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

FF

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER UNDERFLOW

UPDATE EVENT (UEV)

FE FD FC FB 36 35 3405 04 03 02 0106

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER FF 36

Write a new value in TIMx_ARR

 CK_PSC

New value transferred in shadow register
on counter underflow

00 00

Cleared by software

Counter

Time

TIMx_ARR

UnderflowOverflow Overflow Underflow
0

16-bit general purpose timer (TIM2/TIM3) RM0013

144/266 Doc ID 14400 Rev 5

If the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit
generates an update event UEV but without setting the UIF flag (thus no interrupt request
will be sent). This is to avoid generating both update and capture interrupts when clearing
the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR1 register) is set (depending on the URS bit).

The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSCR
register).

The auto-reload shadow register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-reload is
updated before the counter is reloaded, so that the next period is the expected one (the
counter is loaded with the new value).

Hereafter are some examples of the counter behavior for different clock frequencies.

Figure 38. Counter timing diagram, CK_PSC divided by 1, TIMx_ARR=06h, ARPE=1

CK_PSC

02

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER UNDERFLOW

UPDATE EVENT (UEV)

03 04 05 06 05 04 0303 02 01 00 0104

COUNTER OVERFLOW

AUTO-RELOAD PRELOAD REGISTER FD 06

AUTO-RELOAD SHADOW REGISTER FD 06

Write a new value in TIMx_ARR

New value transferred in shadow register
on update event

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 145/266

Hints on using center-aligned mode:

● When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter will start counting up or down depending on the value written in
the DIR bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be
changed at the same time by the software.

● Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was
counting up, it will continue to count up.

– The direction is updated if you write 0 or write the TIMx_ARR value in the counter
but no Update Event UEV is generated.

● The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

16-bit general purpose timer (TIM2/TIM3) RM0013

146/266 Doc ID 14400 Rev 5

17.4 TIMx clock/trigger controller
The clock/trigger controller allows you to configure the timer clock sources, input triggers
and output triggers. The block diagram is shown in Figure 39.

Figure 39. Clock/trigger controller block diagram

17.4.1 Prescaler clock (CK_PSC)

The Time base unit prescaler clock (CK_PSC) can be provided by the following clock
sources:

● Internal clock (fMASTER)

● External clock mode 1: external timer input (TIx)

● External clock mode 2: external trigger input ETR

● Internal trigger inputs (ITRx): using one timer as prescaler for another timer. Refer to
Using one timer as prescaler for another timer on page 154 for more details.

17.4.2 Internal clock source (fMASTER)

If both the clock/trigger mode controller and the external trigger input are disabled
(SMS=0b000 in TIMx_SMCR and ECE=0 in the TIMx_ETR register), then the CEN, DIR
and UG bits are actual control bits and can be changed only by software (except UG which
remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is
clocked by the internal clock.

The Figure 40 shows the behavior of the control circuit and the up-counter in normal mode,
without prescaler.

ETR

fMASTER

Trigger
Controller

TI1FP1

TI2FP2

TRGI
controller

Encoder
interface

Reset, Enable,

Input filterPolarity selection & edge
detector & prescaler

ETRP

TGI

ETRF

TIMx_TRIG

Mode
Clock/Trigger

TRGO to other

TRC

TI1F_ED

TRGO from TIM3 (ITR2)

TRGO from TIM2 (ITR3)

ITR

CK_PSC

to Time Base Unit

From input stage

From input stage

TRGO from TIM4 (ITR0)

 Up/Down, Count

timers

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 147/266

Figure 40. Control circuit in normal mode, fMASTER divided by 1

17.4.3 External clock source mode 1

The counter can count at each rising or falling edge on a selected timer input. This mode is
selected when SMS=0b111 in the TIMx_SMCR register.

Figure 41. TI2 external clock connection example

For example, to configure the up-counter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01’ in the
TIMx_CCMR2 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR2
register (if no filter is needed , keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so you don’t need to configure it. Also you
don’t need to configure the TI2S bits, they only select the input capture source.

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER1 register.

4. Configure the timer in external clock mode 1 by writing SMS=0b111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the trigger flag is set (TIF bit
in the TIMx_SR1 register) and an interrupt request can be sent if enabled (depending on the
TIE in TIMx_IER register).

fMASTER

00

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 01 02 03 04 05 06 0732 33 34 35 3631

CEN = CNT_EN

UG

CNT_INIT (=UG synchronized: UG or UG+1 clock)

fMASTER

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

TIMx_ETR
ECE

TIMx_SMCR
SMS[2:0]

TI1F_ED

TI1FP1

TI2FP2

ETRF

TIMx_SMCR
TS[2:0]

TI2
0

1

TIMx_CCER1

CC2P

Filter

ICF[3:0]
TIMx_CCMR2

Edge
Detector

ti2f_rising

ti2f_falling 110

100

101

111

TRGO from other timers

16-bit general purpose timer (TIM2/TIM3) RM0013

148/266 Doc ID 14400 Rev 5

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on TI2 input.

Figure 42. Control circuit in external clock mode 1

17.4.4 External clock source mode 2

The counter can count at each rising or falling edge on the external trigger input ETR. This
mode is selected by writing ECE=1 in the TIMx_ETR register.

The Figure 43 gives an overview of the external trigger input block.

Figure 43. External trigger input block

For example, to configure the up-counter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0b0000 in the TIMx_ETR register.

2. Set the prescaler by writing ETPS[1:0]=0b01 in the TIMx_ETR register

3. Select rising edge detection on the TRIG pin by writing ETP=0 in the TIMx_ETR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_ETR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual reset of the counter is due to the
resynchronization circuit on the ETRP signal.

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 3634

TI2

CNT_EN

TIF

Write TIF=0

ETR
0

1

TIMx_ETR

ETP

divider
/1, /2, /4, /8

ETPS[1:0]

ETRP filter

ETF[3:0]

down-counterfMASTER

TIMx_ETRTIMx_ETR

TRIG pin

fMASTER

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

TIMx_ETR
ECE

TIMx_SMCR
SMS[2:0]

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 149/266

Figure 44. Control circuit in external clock mode 2

17.4.5 Trigger synchronization

There are four trigger inputs (refer to Table 32: Glossary of internal timer signals on
page 133):

● ETR

● TI1

● TI2

● TRGO from other timers

The TIMx timer can be synchronized with an external trigger in three modes: trigger
standard mode, trigger reset mode and trigger gated mode.

Trigger standard mode

The counter can start in response to an event on a selected input.

In the following example, the up-counter starts in response to a rising edge on TI2 input:

● Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. TI2S bits are
selecting the input capture source only, and don’t need to be configured too. Write
CC2P=0 in TIMx_CCER1 register to select rising edge polarity.

● Configure the timer in trigger mode by writing SMS=0b110 in the TIMx_SMCR register.
Select TI2 as the input source by writing TS=0b110 in the TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on TI2 input.

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 3634

ETR

CNT_EN

fMASTER

ETRP

ETRF

16-bit general purpose timer (TIM2/TIM3) RM0013

150/266 Doc ID 14400 Rev 5

Figure 45. Control circuit in trigger mode

Trigger reset mode

The counter and its prescaler can be re-initialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the up-counter is cleared in response to a rising edge on TI1 input:

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, and do not need to be configured either. Write
CC1P=0 in TIMx_CCER1 register to validate the polarity (and detect rising edges only).

● Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=0b101 in TIMx_SMCR register.

● Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR1 register) and an interrupt request can be sent if
enabled (depending on the TIE in TIMx_IER register).

The following figure shows this behaviour when the auto-reload register TIMx_ARR=36h.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 46. Control circuit in trigger reset mode

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 36 37 3834

TI2

CNT_EN

TIF

00

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 151/266

Trigger gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the up-counter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, and do not need to be configured either. Write
CC1P=1 in TIMx_CCER1 register to validate the polarity (and detect low level only).

2. Configure the timer in trigger gated mode by writing SMS=0b101 in TIMx_SMCR
register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.

3. Enable the counter by writing CEN=1 in the TIMx_CR1 register (in trigger gated mode,
the counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag is set both when the counter starts or stops.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 47. Control circuit in trigger gated mode

Combining trigger modes with external clock mode 2

The external clock mode 2 can be used in addition to another trigger mode. In this case,
ETR is used as external clock input, and another input can be selected as trigger input (in
trigger standard mode, trigger reset mode or trigger gated mode). Take care that you must
not select ETR as TRGI (through the TS bits in TIMx_SMCR register).

In the following example, the up-counter counts at each rising edge on ETR as soon as a
rising edge has occured on TI1 (standard trigger mode with external ETR clock):

● Configure the external trigger input circuit by writing the TIMx_ETR register. In this
example, we don’t need any filter and write ETF=0b0000. Write ETPS=00 to disable
the prescaler, ETP=0 to detect rising edges on ETR and ECE=1 to enable the external
clock mode 2.

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 36 37 3832 33 34

TI1

3130

CNT_EN

TIF

Write TIF=0

16-bit general purpose timer (TIM2/TIM3) RM0013

152/266 Doc ID 14400 Rev 5

select the input capture source only, and do not need to be configured either. Write
CC1P=0 in TIMx_CCER1 register to select rising edge polarity.

● Configure the timer in trigger mode by writing SMS=0b110 in TIMx_SMCR register.
Select TI1 as the input source by writing TS=0b101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. Then the counter counts on
ETR rising edges.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input. The delay between the rising edge on ETR and the
actual reset of the counter is due to the resynchronization circuit on the ETRP signal.

Figure 48. Control circuit in external clock mode 2 + trigger mode

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 3634

ETR

CEN

TIF

TI1

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 153/266

17.4.6 Synchronization from other timers

The timers are linked together internally for timer synchronization or chaining. When one
timer is configured in master mode, it can output a trigger (TRGO) to reset, start, stop or
clock the counter of any other Timer configured in slave mode.

Figure 49. Timer chaining system implementation example

The following figure presents an overview of the trigger selection and the master mode
selection blocks.

Figure 50. Trigger/master mode selection blocks

Trigger
Controller

TI1
TI2

ITR0

ITR3

TIM3_TRGO

TIM3_CH1
TIM3_CH2

TIM 3Trigger
Controller

TI1
TI2

ITR0
ITR2

TIM2_TRGO

TIM2_CH1
TIM2_CH2

TIM 2

Trigger
ControllerITR3

ITR2

TRGO

TIM 4

TRGO from TIM4

TRGO from TIM3

TRGO from TIM2

TRGO from TIM3

TRGO from TIM4

TRGO from TIM2

ITR3

TI1F_ED

ITR

TRC

TI1FP1

TI2FP2

From the Capture/
Compare block

ETRF

TRGI

TIMx_SMCR

TS[2:0]

TRIGGER SELECTION BLOCK

UG
CNT_EN
UEV
MATCH1

OC1REF
OC3REF
OC3REF

MASTER MODE SELECTION BLOCK

MMS[2:0]

TIMx_CR2

TRGO
ITR2TRGO from TIM3

TRGO from TIM2

ITR0TRGO from TIM4

OC4REF

16-bit general purpose timer (TIM2/TIM3) RM0013

154/266 Doc ID 14400 Rev 5

Using one timer as prescaler for another timer

Figure 51. Master/slave timer example

For example, you can configure Timer A to act as a prescaler for Timer B. Refer to
Figure 52. To do this:

1. Configure Timer A in master mode so that it outputs a periodic trigger signal on each
update event UEV. To configure that a rising edge is output on TRGO1 each time an
update event is generated, write MMS=010 in the TIMx_CR2 register,.

2. Connect the TRGO1 output of Timer A to Timer B, Timer B must be configured in slave
mode using ITR1 as internal trigger. Select this through the TS bits in the TIMx_SMCR
register (writing TS=001).

3. Put the clock/trigger controller in external clock mode 1, by writing SMS=111 in the
TIMx_SMCR register. This causes Timer B to be clocked by the rising edge of the
periodic Timer A trigger signal (which corresponds to the Timer A counter overflow).

4. Finally enable both timers by setting their respective CEN bits (TIMx_CR1 register).

Note: If OCi is selected on Timer A as trigger output (MMS=1xx), its rising edge is used to clock
the counter of Timer B.

Using one timer to enable another timer

In this example, we control the enable of Timer B with the output compare 1 of Timer A.
Refer to Figure 52 for connections. Timer B counts on the divided internal clock only when
OC1REF of Timer A is high. Both counter clock frequencies are divided by 4 by the
prescaler compared to fMASTER (fCK_CNT = fMASTER/4).

1. Configure Timer A master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer A OC1REF waveform (TIMx_CCMR1 register).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

4. Configure Timer B in trigger gated mode (SMS=101 in TIMx_SMCR register).

5. Enable Timer B by writing ‘1’ in the CEN bit (TIMx_CR1 register).

6. Start Timer A by writing ‘1’ in the CEN bit (TIMx_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer B
counter enable signal.

TRGO1UEV ITR1

PRESCALER COUNTER

SMSTSMMS

TIMER A TIMER B

MASTER

MODE

 CONTROL

SLAVE

MODE

 CONTROL

 CK_PSC

PRESCALER COUNTER

 Clock

INPUT

 SELECTION
 TRIGGER

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 155/266

Figure 52. Gating Timer B with OC1REF of Timer A

In the example in Figure 52, the Timer B counter and prescaler are not initialized before
being started. So they start counting from their current value. It is possible to start from a
given value by resetting both timers before starting Timer A. You can then write any value
you want in the timer counters. The timers can easily be reset by software using the UG bit
in the TIMx_EGR registers.

In the next example, we synchronize Timer A and Timer B. Timer A is the master and starts
from 0. Timer B is the slave and starts from E7h. The prescaler ratio is the same for both
timers. Timer B stops when Timer A is disabled by writing ‘0’ to the CEN bit in the TIMx_CR1
register:

1. Configure Timer A master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer A OC1REF waveform (TIMx_CCMR1 register).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

4. Configure Timer B in trigger gated mode (SMS=101 in TIMx_SMCR register).

5. Reset Timer A by writing ‘1’ in UG bit (TIMx_EGR register).

6. Reset Timer B by writing ‘1’ in UG bit (TIMx_EGR register).

7. Initialize Timer B to 0xE7 by writing ‘E7h’ in the Timer B counter (TIMx_CNTRL).

8. Enable Timer B by writing ‘1’ in the CEN bit (TIMx_CR1 register).

9. Start Timer A by writing ‘1’ in the CEN bit (TIMx_CR1 register).

10. Stop Timer A by writing ‘0’ in the CEN bit (TIMx_CR1 register).

Timer B-TIF

Write TIF=0

FC FD FE FF 00

3045 3047 3048

fMASTER

TIMER1-OC1REF

TIMER1-CNT

TIMER2-CNT

01

3046

16-bit general purpose timer (TIM2/TIM3) RM0013

156/266 Doc ID 14400 Rev 5

Figure 53. Gating Timer B with the counter enable signal of Timer A (CNT_EN)

Using one timer to start another timer

In this example, we set the enable of Timer B with the update event of Timer A. Refer to
Figure 51 for connections. Timer B starts counting from its current value (which can be non-
zero) on the divided internal clock as soon as the update event is generated by Timer A.
When Timer B receives the trigger signal its CEN bit is automatically set and the counter
counts until we write ‘0’ to the CEN bit in the TIMx_CR1 register. Both counter clock
frequencies are divided by 4 by the prescaler compared to fMASTER (fCK_CNT = fMASTER/4).

1. Configure Timer A master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIMx_CR2 register).

2. Configure the Timer A period (TIMx_ARR registers).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

4. Configure Timer B in trigger mode (SMS=110 in TIMx_SMCR register).

5. Start Timer A by writing ‘1’ in the CEN bit (TIMx_CR1 register).

Timer B-TIF

Write TIF=0

75 00 01

fMASTER

TIMERA-CEN = CNT_EN

TIMERA-CNT

TIMERB-CNT

02

TIMERA-UG

AB 00 E7 E8 E9

TIMERB-UG

TIMERB
write CNT

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 157/266

Figure 54. Triggering Timer B with update event of Timer A (TIMERA-UEV)

As in the previous example, you can initialize both counters before starting counting.
Figure 55 shows the behaviour with the same configuration as in the Figure 53 but in trigger
standard mode instead of trigger gated mode (SMS=110 in the TIMx_SMCR register).

Figure 55. Triggering Timer B with counter enable CNT_EN of Timer A

Timer B-TIF

Write TIF=0

FD FE FF 00 01

45 47 48

fMASTER

TIMERA-UEV

TIMERA-CNT

TIMERB-CNT

02

46

TIMERB-CEN = CNT_EN

Timer B-TIF

Write TIF=0

75 00 01

fMASTER

TIMERA-CEN = CNT_EN

TIMERA-CNT

TIMERB-CNT

02

TIMERA-UG

CD 00 E7 E8 EA

TIMERB-UG

TIMERB
write CNT

E9

16-bit general purpose timer (TIM2/TIM3) RM0013

158/266 Doc ID 14400 Rev 5

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of Timer A when its TI1 input rises, and the enable of
Timer B with the enable of Timer A. Refer to Figure 51 for connections. To ensure the
counters alignment, Timer A must be configured in master/slave mode (slave with respect to
TI1, master with respect to Timer B).

1. Configure Timer A master mode to send its Enable as trigger output (MMS=001 in the
TIMx_CR2 register).

2. Configure Timer A slave mode to get the input trigger from TI1 (TS=100 in the
TIMx_SMCR register).

3. Configure Timer A in trigger mode (SMS=110 in the TIMx_SMCR register).

4. Configure the Timer A in Master/Slave mode by writing MSM=’1’ (TIMx_SMCR
register).

5. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

6. Configure Timer B in trigger mode (SMS=110 in the TIMx_SMCR register).

When a rising edge occurs on TI1 (Timer A), both counters starts counting synchronously
on the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but you can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode
insert a delay between CNT_EN and CK_PSC on Timer A.

Figure 56. Triggering Timer A and B with Timer A TI1 input

00 01

fMASTER

Timer A-CEN = CNT_EN

Timer A-CNT

Timer A-TI1

Timer A-CK_PSC

02 03 04 05 06 07 08 09

Timer A-TIF

00 01

Timer B-CEN = CNT_EN

Timer B-CNT

Timer B-CK_PSC

02 03 04 05 06 07 08 09

Timer B-TIF

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 159/266

17.5 TIMx capture/compare channels
The timer I/O pins (TIMx_CHi) can be configured either for input capture or output compare
functions. The choice made by configuring the CCiS channel selection bits in the
capture/compare channel mode register (TIMx_CCMRi), where i is the channel number.

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), an input stage for capture (with digital filter, multiplexing and prescaler)
and an output stage (with comparator and output control).

Figure 57. Capture/compare channel 1 main circuit

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register. In capture mode, captures are actually done in
the shadow register, which is copied into the preload register. In compare mode, the content
of the preload register is copied into the shadow register which is compared to the counter.

When the channel is configured in output mode (CCiS=0b00 in the TIMx_CCMRi register)
where i is the channel number, the TIMx_CCRi register can be accessed without any
restriction.

When the channel is configured in input mode, the sequence for reading the TIMx_CCRi
register is the same as for the counter. See Figure 58. When a capture occurs, the content
of the counter is captured into the TIMx_CCRi shadow register. Then this value is loaded
into the preload register, except during the read sequence, when the preload register is
frozen.

CC1E

Capture/Compare shadow Register

comparator

Capture/Compare Preload Register

Counter

ic1ps

CC1S[0]

CC1S[1]

capture

input
mode

S

R

read CCR1H

read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

output
mode

UEV

OC1PE

(from time

compare_transfer

TIMx_CCMR1

OC1PE

base unit)

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

16-bit general purpose timer (TIM2/TIM3) RM0013

160/266 Doc ID 14400 Rev 5

Figure 58. 16-bit read sequence for the TIMx_CCRi register in capture mode

Figure 58 shows the sequence for reading the CCRi registers in the 16-bit timers. This
buffered value remains unchanged until the 16-bit read sequence is completed.

After a complete reading sequence, if only the TIMx_CCRiL register is read, it returns the
LS Byte of the count value at the time of the read.

If the MS byte is read after the LS byte, it no longer corresponds to the same captured value
as the LS byte.

17.5.1 Write sequence for 16-bit TIMx_CCRi registers

16-bit values are loaded in the TIMx_CCRi registers through preload registers. This must
be performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte has been written. Do not use the LDW instruction, as this writes the
LS byte first, and would produce wrong results in this case.

17.5.2 Input stage

Figure 59. Channel input stage block diagram

As shown in Figure 60, the input stage samples the corresponding TIi input to generate a
filtered signal TIiF. Then, an edge detector with polarity selection generates a signal (TIiFPx)
which can be used as trigger input by the clock/trigger controller or as the capture
command. It is prescaled before the capture register (ICiPS).

is frozen
Read

At t0

Read Preload register
is no longer frozenAt t0 +Δt

Other
instructions

Beginning of the sequence

Sequence completed

Preload register

LS Byte

MS Byte

is buffered into
shadow register

the preload register

Other
instructions

is buffered into
shadow register

the preload register

Other
instructions

IC1

IC2

Input Filter &
Edge Detector

TI1FP1

TRC

TRC

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

XOR

TIMx_CH1

TIMx_CH2

to clock/trigger controller

TRCTI1F_ED

to capture/compare channels

from Comparator

Input Filter &
Edge Detector

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 161/266

Figure 60. Input stage of TIM 1 channel 1

17.5.3 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRi) are used to latch the
value of the counter after a transition detected on the corresponding ICi signal. When a
capture occurs, the corresponding CCiIF flag (TIMx_SR1 register) is set.

An interrupt can be sent if it is enabled by setting the CCiIE bit in the TIMx_IER register. If a
capture occurs while the CCiIF flag was already high, then the over-capture flag CCiOF
(TIMx_SR2 register) is set. CCiIF can be cleared by software by writing it to ‘0’ or by reading
the captured data stored in the TIMx_CCRiL register. CCiOF is cleared when you write it to
‘0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: For example, to link the TIMx_CCR1 register to the TI1 input,
write the CC1S bits to 0b01 in the TIMx_CCMR1 register. This configures the channel
in input mode and the TIMx_CCR1 register becomes read-only.

2. Program the input filter duration that is needed for the type of the signal to be
conntected to the timer. This is done for each TIi input using the ICiF bits in the
TIMx_CCMRi register. For example, if you know that when, the input signal toggles, it is
unstable for up to 5 fMASTER cycles, you must program the filter duration longer than 5
clock cycles. The filter bits allow you to select a duration of 8 cycles by writing the value
0b0011 in in these bits the TIMx_CCMR1 register. With this filter setting, a transition on
TI1 is valid only when 8 consecutive samples with the new level have been detected
(sampled at fMASTER frequency).

3. Select the edge of the active transition on the TI1 channel by writing CC1P bit to ‘0’ in
the TIMx_CCER1 register (rising edge in this case).

4. Program the input prescaler. In our example, we want the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 0b00 in the
TIMx_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER1 register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_IER
register.

TI1 0

1

TIMx_CCER1

CC1P

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

down-counter

TIMx_CCMR1

Edge
Detector

TI1F_rising

TI1F_falling

to clock/trigger controller

TI1FP1

11

01

TIMx_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from clock/trigger
controller)

10

fMASTER

TIMx_CCER1

CC1E

ICPS

TI1F

0

1

TI2F_rising

TI2F_falling
(from channel 2)

16-bit general purpose timer (TIM2/TIM3) RM0013

162/266 Doc ID 14400 Rev 5

When an input capture occurs:

● The TIMx_CCR1 register gets the value of the counter on the active transition.

● The input capture flag (CC1IF) is set (interrupt flag). The overcapture flag CC1OF is
also set if at least two consecutive captures occured while the flag was not cleared.

● An interrupt is generated depending on the CC1IE bit.

To handle the overcapture event (CC1OF flag), it is recommended to read the data before
the overcapture flag. This is to avoid missing an overcapture which could happen after
reading the flag and before reading the data.

Note: It is not possible to send an IC interrupt without actually capturing the counter value in the
TIMx_CCRx register. Nevertheless, it is possible to generate the capture event by software
by setting the corresponding CCiG bit in the TIMx_EGR register.

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 163/266

PWM input signal measurement

This mode is a particular case of input capture mode. The procedure is the same except:

● Two ICi are mapped on the same TIi input.

● These 2 ICi are active on edges with opposite polarity.

● One of the two TIiFP is selected as trigger input and the clock/trigger controller is
configured in trigger reset mode.

Figure 61. PWM input signal measurement

For example, you can measure the period (in the TIMx_CCR1 register) and the duty cycle
(in the TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on fMASTER frequency and prescaler value):

1. Select the active input capture or trigger input for TIMx_CCR1: write the CC1S bits to
0b01 in the TIMx_CCMR1 register (TI1FP1 selected).

2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ‘0’ (active on rising edge).

3. Select the active input for TIMx_CCR2: write the CC2S bits to 0b10 in the
TIMx_CCMR2 register (TI1FP2 selected).

4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ (active on falling edge).

5. Select the valid trigger input: write the TS bits to 0b101 in the TIMx_SMCR register
(TI1FP1 selected).

6. Configure the clock/trigger controller in reset mode: write the SMS bits to ‘100’ in the
TIMx_SMCR register.

7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER1 register.

0

IC1 IC2IC1IC2IC1: Period measurement

in TIMx_CCR1 register.

Reset counter.

IC2: Duty Cycle

measurement in

TIMx_CCR2 register

PWM Input
Signal

TIMx_ARR

C
o
u
n
te

r

Time

Time

value

va
lu

e

16-bit general purpose timer (TIM2/TIM3) RM0013

164/266 Doc ID 14400 Rev 5

Figure 62. PWM input signal measurement example

17.5.4 Output stage

The output stage generates an intermediate waveform called OCiREF (active high) which is
then used for reference. Break functions and polarity act at the end of the chain.

Figure 63. Channel output stage block diagram

Figure 64. Output stage of channel 1

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 Capture

period measurement

reset counter

IC2 Capture

pulse width measurement

OC1REF

OC2REF

output
control

output
control

TIMx_CH1
OC1

from capture/compare

channels
TIMx_CH2

OC2

Output Mode
Counter > CCR1

Counter = CCR1 Controller

TIMx_CCMR1

OC1M[2:0]

OC1REF

0

1

CC1P

TIMx_CCER1

Output
Enable
Circuit

OC1

CC1E TIMx_CCER1

ETR

OSSI TIMx_BKRMOE

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 165/266

17.5.5 Forced output mode

In output mode (CCiS bits = 0b00 in the TIMx_CCMRi register) where i is the channel
number, each output compare signal can be forced to high or low level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal to its active level, you just need to write ‘101’ in the OCiM
bits in the corresponding TIMx_CCMRi register. Thus OCiREF is forced high (OCiREF is
always active high) and the OCi output is forced to high or low level depending on the CCiP
polarity bit.

For example: CCiP=0 (OCi active high) => OCi is forced to high level.

The OCiREF signal can be forced low by writing the OCiM bits to 0b100 in the
TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRi shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the Output Compare Mode section below.

17.5.6 Output compare mode

This function is used to control an output waveform or indicate when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter:

● Depending on the output compare mode, the corresponding OCi output pin:

– keeps its level (OCiM=0b000),

– is set active (OCiM=0b001),

– is set inactive (OCiM=0b010)

– or toggles (OCiM=0b011)

● Sets a flag in the interrupt status register (CCiIF bit in the TIMx_SR1 register).

● Generates an interrupt if the corresponding interrupt mask is set (CCiIE bit in the
TIMx_IER register).

The output compare mode is defined by the OCiM bits in the TIMx_CCMRi register. The
active or inactive level polarity is defined by the CCiP bit in the TIMx_CCERi register.

The TIMx_CCRi registers can be programmed with or without preload registers using the
OCiPE bit in the TIMx_CCMRi register.

In output compare mode, the update event UEV has no effect on the OCiREF and OCi
output. The timing resolution is one count of the counter. Output compare mode can also be
used to output a single pulse.

Procedure:

16-bit general purpose timer (TIM2/TIM3) RM0013

166/266 Doc ID 14400 Rev 5

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRi registers.

3. Set the CCiIE bit if an interrupt request is to be generated.

4. Select the output mode as follwos:

– Write OCiM = 0b011 to toggle OCi output pin when CNT matches CCRi

– Write OCiPE = 0 to disable preload register

– Write CCiP = 0 to select active high polarity

– Write CCiE = 1 to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRi register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCiPE=’0’, else TIMx_CCRi
shadow register will be updated only at the next update event UEV). An example is given in
Figure 65.

Figure 65. Output compare mode, toggle on OC1

OC1REF=OC1

TIMx_CNT B200 B2010039

TIMx_CCR1 003A

Write B201h in the CC1R register

Match detected on OCR1

Interrupt generated if enabled

003B

B201

003A

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 167/266

17.5.7 PWM mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRi register.

The PWM mode can be selected independently on each channel (one PWM per OCi output)
by writing 0b110 (PWM mode 1) or 0b111 (PWM mode 2) in the OCiM bits in the
TIMx_CCMRi register. You must enable the corresponding preload register by setting the
OCiPE bit in the TIMx_CCMRi register, and optionally enable the auto-reload preload
register (in up-counting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1
register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.

OCi polarity is software programmable using the CCiP bit in the TIMx_CCERi register. It can
be programmed as active high or active low. OCi output is enabled by a combination of
CCiE, MOE, OISi, OSSR and OSSI bits (TIMx_CCERi and TIMx_BKR registers). Refer to
the TIMx_CCERi register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRi are always compared to determine
whether TIMx_CCRi≤TIMx_CNT or TIMx_CNT≤TIMx_CCRi (depending on the direction of
the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

Up-counting configuration

Up-counting is active when the DIR bit in the TIMx_CR1 register is low.

In the following example, we consider the PWM mode 1. The reference PWM signal
OCiREF is high as long as TIMx_CNT <TIMx_CCRi else it becomes low. If the compare
value in TIMx_CCRi is greater than the auto-reload value (in TIMx_ARR) then OCiREF will
be held at ‘1’. If the compare value is 0 then OCiREF will be held at ‘0’. Figure 66 shows
some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

16-bit general purpose timer (TIM2/TIM3) RM0013

168/266 Doc ID 14400 Rev 5

Figure 66. Edge-aligned counting mode PWM mode 1 waveforms (ARR=8)

Down-counting configuration

Down-counting is active when DIR bit in TIMx_CR1 register is high. Refer to Down-counting
mode on page 141

In PWM mode 1, the reference signal OCiREF is low as long as TIMx_CNT> TIMx_CCRi
else it becomes high. If the compare value in TIMx_CCRi is greater than the auto-reload
value in TIMx_ARR, then OCiREF will be held at ‘1’. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OCiREF/OCi signals).

The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and is read-only in this mode. Refer to Center-
aligned mode (up/down counting) on page 143.

Figure 67 shows some center-aligned PWM waveforms in an example where:

● The TIMx_ARR=8,

● PWM mode is PWM mode 1,

● the flag is set (arrow symbol in Figure 67) in three different cases:

– only when the counter counts down (CMS=0b01)

– only when the counter counts up (CMS=0b10) .

– when the counter counts up and down (CMS=0b11) .

COUNTER REGISTER

‘1’

0 1 2 3 4 5 6 7 8 0 1

‘0’

 OCiREF

CCiIF

 OCiREF

CCiIF

 OCiREF

CCiIF

 OCiREF

CCiIF

CCRx = 4

CCRx = 8

CCRx > 8

CCRx = 0

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 169/266

Figure 67. Center-aligned PWM waveforms (ARR=8)

COUNTER REGISTER

‘1’

0 1 2 3 4 5 6 7 8 7 6

‘0’

OCiREF

CCiIF

OCiREF

CCiIF

OCiREF

CCiIF

OCiREF

CCRx=4

CCRx=7

CCRx=8

CCRx=0

5 4 3 2 1 0 1

CMS=0b01

CMS=0b10

CMS=0b11

CMS=0b10 or 0b11

CMS=0b01

CMS=0b10

CMS=0b11

CCiIF

CMS=0b01

CMS=0b10

CMS=0b11

‘1’OCiREF

CCiIF

CCRx>8

CMS=0b01

CMS=0b10

CMS=0b11

16-bit general purpose timer (TIM2/TIM3) RM0013

170/266 Doc ID 14400 Rev 5

One pulse mode

One Pulse Mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the clock/trigger controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One Pulse Mode
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

In up-counting: CNT<CCRi≤ARR (in particular, 0<CCRi),

In down-counting: CNT>CCRi.

Figure 68. Example of one pulse mode

For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use IC2 as trigger 1:

● Map IC2 on TI2 by writing CC2S=0b01 in the TIMx_CCMR2 register.

● IC2 must detect a rising edge, write CC2P=’0’ in the TIMx_CCER1 register.

● Configure IC2 as trigger for the clock/trigger controller (TRGI) by writing TS=0b110 in
the TIMx_SMCR register.

● IC2 is used to start the counter by writing SMS to 0b110 in the TIMx_SMCR register
(trigger mode).

TI2

C
O

U
N

TE
R

t
0

TIMx_ARR

TIMx_CCR1

OC1

tDELAY
tPULSE

OC1REF

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 171/266

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

● The tDELAY is defined by the value written in the TIMx_CCR1 register.

● The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

● Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OCiM=0b111 in the TIMx_CCMR1
register. You can optionally enable the preload registers by writing OC1PE=’1’ in the
TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to
write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

You only want 1 pulse, so you write ‘1’ in the OPM bit in the TIMx_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).

Particular case: OCi fast enable:

In One Pulse Mode, the edge detection on TIi input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If you want to output a waveform with the minimum delay, you can set the OCiFE bit in the
TIMx_CCMRi register. Then OCiREF (and OCi) will be forced in response to the stimulus,
without taking in account the comparison. Its new level will be the same as if a compare
match had occured. OCiFE acts only if the channel is configured in PWM1 or PWM2 mode.

17.5.8 Using the break function

The break function is often used in motor control. When using the break function, the output
enable signals and inactive levels are modified according to additional control bits (MOE,
OSSR and OSSI bits in the TIMx_BKR register).

When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable
the break function by setting the BKE bit in the TIMx_BKR register. The break input polarity
can be selected by configuring the BKP bit in the same register. BKE and BKP can be
modified at the same time.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIMx_BKR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you
must insert a delay (dummy instruction) before reading it correctly.

16-bit general purpose timer (TIM2/TIM3) RM0013

172/266 Doc ID 14400 Rev 5

When a break occurs (selected level on the break input):

● The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

● Each output channel is driven with the level programmed in the OISi bit in the
TIMx_OISR register as soon as MOE=0. If OSSI=0 then the timer releases the enable
output else the enable output remains high.

● The break status flag (BIF bit in the TIMx_SR1 register) is set. An interrupt can be
generated if the BIE bit in the TIMx_IER register is set.

● If the AOE bit in the TIMx_BKR register is set, the MOE bit is automatically set again at
the next update event UEV. This can be used to perform a regulation, for instance. Else,
MOE remains low until you write it to ‘1’ again. In this case, it can be used for security
and you can connect the break input to an alarm from power drivers, thermal sensors
or any security components.

Note: The break inputs are acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot be
cleared.

The break can be generated by the break input (BKIN) which has a programmable polarity
and can be enabled or disabled by setting or resetting the BKE bit in TIMx_BKR register.

In addition to the break inputs and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows you to freeze the
configuration of several parameters (OCi polarities and state when disabled, OCiM
configurations, break enable and polarity). You can choose from 3 levels of protection
selected by the LOCK bits in the TIMx_BKR register. The LOCK bits can be written only
once after an MCU reset.

Figure 69 shows an example of behavior of the outputs in response to a break.

Figure 69. Behavior of outputs in response to a break

17.5.9 Clearing the OCiREF signal on an external event

The OCiREF signal of a given channel can be cleared when a high level is detected on
ETRF (if OCiCE=‘1’ in the TIMx_CCMRi register, one enable bit per channel). The OCiREF
signal remains low until the next UEV update event occurs. This function can be used in
output compare mode and PWM mode only, it does not work in forced mode.

It can be connected to the output of a comparator and be used for current handling, for
instance.

 OCiREF

BREAK (MOE

OCi
(CCiP=0, OISi=1)

OCi
(CCiP=0, OISi=0)

OCi
(CCiP=1, OISi=1)

OCi
(CCiP=1, OISi=0)

)

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 173/266

For example, the OCiREF signal can be connected to the output of a comparator to be used
for current handling. In this case, the external trigger must be configured as follows:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] in the TIMx_ETR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE in the TIMx_ETR register set to
‘0’.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured as desired.

Refer to the external trigger input block diagram Figure 43 on page 148

Figure 70 shows the behavior of the OCiREF signal when the ETRF input becomes high, for
both values of the enable bit OCiCE. In this example, the timer is programmed in PWM
mode.

Figure 70. ETR activation

17.5.10 Encoder interface mode

This mode is typically used for motor control. To select Encoder Interface mode write
SMS=0b001 in the TIMx_SMCR register if the counter is counting on TI2 edges only,
SMS=0b010 if it is counting on TI1 edges only and SMS=0b011 if it is counting on both TI1
and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the
TIMx_CCER1 register. When needed, you can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 33. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the

OCiREF

counter (CNT)

OCiREF

ETRF

(OCiCE=’0’)

(OCiCE=’1’)

ETRF
becomes high

ETRF
still high

(CCRx)

16-bit general purpose timer (TIM2/TIM3) RM0013

174/266 Doc ID 14400 Rev 5

TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must
configure TIMx_ARR before starting. In the same way, the capture, compare, prescaler,
trigger output features continue to work as normal. Encoder mode and External clock mode
2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators will normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The Figure 71 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

● CC1S = 0b01 (TIMx_CCMR1 register, IC1 mapped on TI1).

● CC2S = 0b01 (TIMx_CCMR2 register, IC2 mapped on TI2).

● CC1P = 0 (TIMx_CCER1 register, IC1 non-inverted, IC1=TI1).

● CC2P = 0 (TIMx_CCER2 register, IC2 non-inverted, IC2=TI2).

● SMS = 0b011 (TIMx_SMCR register, both inputs are active on both rising and falling
edges).

● CEN = 1 (TIMx_CR1 register, Counter is enabled).

Table 33. Counting direction versus encoder signals

Active edge

Level on
opposite

signal (TI1FP1
for TI2,

TI2FP2 for
TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No count No count

Low Up Down No count No count

Counting on
TI2 only

High No count No count Up Down

Low No count No count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 175/266

Figure 71. Example of counter operation in encoder interface mode

Figure 72 gives an example of counter behaviour when IC1 polarity is inverted (same
configuration as above except CC1P=’1’).

Figure 72. Example of encoder interface mode with IC1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, decceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer).

TI1

forward forwardbackwardjitter jitter

up down up

TI2

COUNTER

TI1

forward forwardbackwardjitter jitter

updown

TI2

COUNTER

down

16-bit general purpose timer (TIM2/TIM3) RM0013

176/266 Doc ID 14400 Rev 5

17.6 TIMx interrupts
TIMx has 6 interrupt request sources, mapped on 2 interrupt vectors:

● Break interrupt

● Trigger interrupt

● Commutation interrupt

● Capture/Compare 2 interrupt

● Capture/Compare 1 interrupt

● Update Interrupt (ex: overflow, underflow, counter initialization)

To use the interrupt features, for each interrupt channel used, set the desired “Interrupt
Enable” bit: BIE, TIE, COMIE, CCiIE, UIE bits in the TIMx_IER register to enable interrupt
requests.

The different interrupt sources can be also generated by software using the corresponding
bits in the TIMx_EGR register.

17.6.1 TIMx wait-for-event capability

In wait-for-event mode (WFE), TIMx Capture/Compare, break, trigger and update interrupts
can be used to wake up the device. The interrupt event must have been previously
configured through bits TIMx_EV0 and TIMx_EV1 in the WFE_CR1 register (see
Section 9.5: WFE registers).

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 177/266

17.7 TIMx registers

17.7.1 Control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

ARPE CMS[1:0] DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw

Bit 7 ARPE: Auto-Reload Preload Enable
0: TIMx_ARR register is not buffered through a preload register. It can be written directly.
1: TIMx_ARR register is buffered through a preload register.

Bits 6:5 CMS: Center-aligned Mode Selection.
00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).
01: Center-aligned mode 1. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the
counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the
counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the
counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the
counter is enabled (CEN=1)
Encoder mode (SMS=001, 010 or 011 in GPT_SMCR register) must be disabled in center-
aligned mode.

Bit 4 DIR: Direction.

0: Counter used as up-counter.
1: Counter used as down-counter.

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.

Bit 3 OPM: One Pulse Mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit)

Bit 2 URS: Update Request Source
0: When enabled, an update interrupt request is sent as soon as registers are updated (counter
overflow)
1: When enabled, an update interrupt request is sent only when the counter reaches the overflow.

Bit 1 UDIS: Update Disable

0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated or an hardware reset is generated by the clock/trigger mode controller. Buffered registers
are then loaded with their preload values
1: An Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). The
counter and the prescaler are re-initialized if the UG bit is set .

Bit 0 CEN: Counter Enable.

0: Counter disabled
1: Counter enabled

16-bit general purpose timer (TIM2/TIM3) RM0013

178/266 Doc ID 14400 Rev 5

17.7.2 Control register 2 (TIMx_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved MMS[2:0] Reserved

rw rw rw rw

Bit 7 Reserved, must be kept cleared.

Bits 6:4 MMS: Master mode selection.
These bits select the information to be sent in master mode to other timers for synchronization
(TRGO). The combination is as follows:

000: Reset - the UG bit from the TIM3_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in trigger reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable
signal is generated by a logic OR between CEN control bit and the trigger input when configured in
gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in TIM3_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO).
011: Reserved
100: Reserved
101: Reserved
111: Reserved

Bits 3:0 Reserved, must be kept cleared.

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 179/266

17.7.3 Slave mode control register (TIMx_SMCR)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

MSM TS[2:0] Reserved SMS[2:0]

rw rw rw rw rw rw rw

Bit 7 MSM: Master/slave mode.
0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).

Bits 6:4 TS[2:0]: Trigger Selection.
This bit-field selects the trigger input to be used to synchronize the counter.

000: internal trigger ITR0 connected to TIM4 TRGO
001: reserved
010: internal trigger ITR2 connected to TIM3 TRGO
011: internal trigger ITR3 connected to TIM2 TRGO
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong
edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMS[2:0]: Clock/trigger/slave mode selection.

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity
selected on the external input (see Input Control register and Control register description).

000: Clock/trigger controler disabled - if CEN = ‘1’ then the prescaler is clocked directly by the
internal clock.
001: Reserved.
010: Reserved.
011: Reserved.
100: Trigger reset mode - Rising edge of the selected trigger signal (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are
controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.
111: External clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

16-bit general purpose timer (TIM2/TIM3) RM0013

180/266 Doc ID 14400 Rev 5

17.7.4 External trigger register (TIMx_ETR)

Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0]

rw rw rw rw rw rw rw rw

Bit 7 ETP: External Trigger Polarity.
This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 6 ECE: External Clock Enable.
This bit enables External clock mode 2.
0: External clock mode 2 disabled.
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.

Note: Setting the ECE bit has the same effect as selecting the external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111 in the TIMx_SMCR register).
It is possible to use simultaneously the external clock mode 2 with the following modes: trigger
standard mode, trigger reset mode and trigger gated mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111 in TIMx_SMCR register).

If external clock mode 1 and external clock mode 2 are enabled at the same time, the external
clock input will be ETRF.

Bits 5:4 ETPS: External Trigger Prescaler.

External trigger signal ETRP frequency must be at must 1/4 of fMASTER frequency. A prescaler can
be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks.
00: Prescaler OFF.
01: ETRP frequency divided by 2.
10: ETRP frequency divided by 4.
11: ETRP frequency divided by 8.

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 181/266

Bits 3:0 ETF: External Trigger Filter.
This bit-field defines the frequency used to sample ETRP signal and the length of the digital filter
applied to ETRP. The digital filter is made of an event counter in which N events are needed to
validate a transition on the output:
0000: No filter, sampling is done at fMASTER.
0001: fSAMPLING=fMASTER, N=2.
0010: fSAMPLING=fMASTER, N=4.
0011: fSAMPLING=fMASTER, N=8.
0100: fSAMPLING=fMASTER/2, N=6.
0101: fSAMPLING=fMASTER/2, N=8.
0110: fSAMPLING=fMASTER/4, N=6.
0111: fSAMPLING=fMASTER/4, N=8.
1000: fSAMPLING=fMASTER/8, N=6.
1001: fSAMPLING=fMASTER/8, N=8.
1010: fSAMPLING=fMASTER/16, N=5.
1011: fSAMPLING=fMASTER/16, N=6.
1100: fSAMPLING=fMASTER/16, N=8.
1101: fSAMPLING=fMASTER/32, N=5.
1110: fSAMPLING=fMASTER/32, N=6.
1111: fSAMPLING=fMASTER/32, N=8.

16-bit general purpose timer (TIM2/TIM3) RM0013

182/266 Doc ID 14400 Rev 5

17.7.5 Interrupt enable register (TIMx_IER)

Address offset: 0x04

Reset value: 0x00

17.7.6 Status register 1 (TIMx_SR1)

Address offset: 0x05

Reset value: 0x00

7 6 5 4 3 2 1 0

BIE TIE Reserved CC2IE CC1IE UIE

rw rw rw rw rw

Bit 7 BIE: Break Interrupt Enable.
0: Break Interrupt disabled.
1: Break Interrupt enabled.

Bit 6 TIE: Trigger Interrupt Enable.
0: Trigger Interrupt disabled.
1: Trigger Interrupt enabled.

Bits 5:3 Reserved, must be kept cleared.

Bit 2 CC2IE: Capture/Compare 2 Interrupt Enable

0: CC2 Interrupt disabled
1: CC2 Interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 Interrupt Enable

0: CC1 Interrupt disabled
1: CC1 Interrupt enabled

Bit 0 UIE: Update Interrupt Enable.

0: Update Interrupt disabled
1: Update Interrupt enabled

7 6 5 4 3 2 1 0

BIF TIF reserved CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit 7 BIF: Break Interrupt Flag.
This flag is set by hardware as soon as the break input goes active. It can be cleared by software if
the break input is not active.
0: No break event occurred.
1: An active level has been detected on the break input.

Bit 6 TIF: Trigger Interrupt Flag.

This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in
case gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bits 5:3 Reserved, must be kept cleared.

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 183/266

17.7.7 Status register 2 (TIMx_SR2)

Address offset: 0x06

Reset value: 0x00

Bit 3 CC3IF: Capture/Compare 3 Interrupt Flag
Refer to CC1IF description

Bit 2 CC2IF: Capture/Compare 2 Interrupt Flag
Refer to CC1IF description

Bit 1 CC1IF: Capture/Compare 1 Interrupt Flag
– If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value. It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT has matched the content of the TIMx_CCR1 register.

– If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1L
register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1
which matches the selected polarity).

Bit 0 UIF: Update Interrupt Flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow if UDIS=0 in the TIMx_CR1 register.

– When CNT is re-initialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CR1 register.

7 6 5 4 3 2 1 0

Reserved CC2OF CC1OF Reserved

rc_w0 rc_w0

Bits 7:3 Reserved

Bit 2 CC2OF: Capture/Compare 2 Overcapture Flag

Refer to CC1OF description

Bit 1 CC1OF: Capture/Compare 1 Overcapture Flag

This flag is set by hardware only when the corresponding channel is configured in input capture
mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set

Bit 0 Reserved, forced by hardware to 0.

16-bit general purpose timer (TIM2/TIM3) RM0013

184/266 Doc ID 14400 Rev 5

17.7.8 Event generation register (TIMx_EGR)

Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0

BG TG Reserved CC2G CC1G UG

w w w w w

Bit 7 BG: Break Generation.
This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: A break event is generated. MOE bit is cleared and BIF flag is set. An interrupt is generated if
enabled by the BIE bit.

Bit 6 TG: Trigger Generation.

This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: The TIF flag is set in TIMx_SR1 register. An interrupt is generated if enabled by the TIE bit.

Bits 5:3 Reserved.

Bit 2 CC2G: Capture/Compare 2 Generation.
Refer to CC1G description

Bit 1 CC1G: Capture/Compare 1 Generation.
This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: A capture/compare event is generated on channel 1:
– If the CC1 channel is configured in output mode:

CC1IF flag is set, and the corresponding interrupt request is sent if enabled.

– If the CC1 channel configured in input mode:
The current value of the counter is captured in the TIMx_CCR1 register. The CC1IF flag is set, and
the corresponding interrupt request is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update Generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is cleared too.

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 185/266

17.7.9 Capture/compare mode register 1 (TIMx_CCMR1)

The channel can be used in input (capture mode) or in output (compare mode). The
direction of the channel is defined by configuring the CC1S bits. All the other bits of this
register have a different function in input and in output mode. For a given bit, OCxx
describes its function when the channel is configured in output, ICxx describes its function
when the channel is configured in input. So be aware that the same bit can have a different
meaning for the input stage and for the output stage.

Address offset: 0x08

Reset value: 0x00

● Channel configured in output

7 6 5 4 3 2 1 0

Reserved OC1M[2:0] OC1PE OC1FE CC1S[1:0]

rw rw rw rw rw rw rw

Bit 7 Reserved

Bits 6:4 OC1M: Output Compare 1 Mode
These bits defines the behavior of the output reference signal OC1REF from which OC1 is derived.
OC1REF is active high whereas OC1 active level depends on the CC1P bit.
000 : Frozen - The comparison between the output compare register TIMx_CCR1 and the counter
TIMx_CNT has no effect on the outputs.
001 : Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matchs the capture/compare register 1 (TIMx_CCR1).
010 : Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter
TIMx_CNT matchs the capture/compare register 1 (TIMx_CCR1).
011 : Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100 : Force inactive level - OC1REF is forced low.
101 : Force active level - OC1REF is forced high.
110 : PWM mode 1 - In up-counting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else
inactive. In down-counting, channel 1 is inactive (OC1REF=‘0’) as long as TIMx_CNT>TIMx_CCR1
else active (OC1REF=’1’).
111 : PWM mode 2 - In up-counting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else
active.

Note: In PWM mode 1 or 2, the OCiREF level changes only when the result of the comparison
changes or when the output compare mode switches from “frozen” mode to “PWM” mode.
Refer to Section 17.5.7 on page 167 for more details.

Bit 3 OC1PE: Output Compare 1 Preload Enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value
is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register.
TIMx_CCR1 preload value is loaded in the shadow register at each update event.

Note: For correct operation, preload registers must be enabled when the timer is in PWM mode. This
is not mandatory in one pulse mode (OPM bit set in TIMx_CR1 register).

16-bit general purpose timer (TIM2/TIM3) RM0013

186/266 Doc ID 14400 Rev 5

● Channel configured in input

Bit 2 OC1FE: Output Compare 1 Fast Enable.
This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The
minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to
the compare level independently from the result of the comparison. Delay to sample the trigger input
and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured
in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.
10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.
11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E= ’0’ in TIMx_CCER1 and
updated).

7 6 5 4 3 2 1 0

IC1F[3:0] IC1PSC[1:0] CC1S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC1F: Input Capture 1 Filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N events are needed to validate a
transition on the output:
0000: No filter, sampling is done at fMASTER.
0001: fSAMPLING= fMASTER, N=2.
0010: fSAMPLING= fMASTER, N=4.
0011: fSAMPLING= fMASTER, N=8.
0100: fSAMPLING= fMASTER/2, N=6.
0101: fSAMPLING= fMASTER/2, N=8.
0110: fSAMPLING= fMASTER/4, N=6.
0111: fSAMPLING= fMASTER/4, N=8.
1000: fSAMPLING= fMASTER/8, N=6.
1001: fSAMPLING= fMASTER/8, N=8.
1010: fSAMPLING= fMASTER/16, N=5.
1011: fSAMPLING= fMASTER/16, N=6.
1100: fSAMPLING= fMASTER/16, N=8.
1101: fSAMPLING= fMASTER/32, N=5.
1110: fSAMPLING= fMASTER/32, N=6.
1111: fSAMPLING= fMASTER/32, N=8.

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 187/266

17.7.10 Capture/compare mode register 2 (TIMx_CCMR2)

Note: Refer to Capture/compare mode register 1 (TIMx_CCMR1) on page 185 for details on using
these bits.

Address offset: 0x09

Reset value: 0x00

● Channel configured in output

Bits 3:2 IC1PSC: Input Capture 1 Prescaler
This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input.
01: Capture is done once every 2 events.
10: Capture is done once every 4 events.
11: Capture is done once every 8 events.

Note: The internal event counter is not reset when IC1PSC is changed on the fly. In this case the old
value is used until the next capture occurs. To force a new value to be taken in account
immediately, you can clear the CC1E bit and set it again.

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.
10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.
11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E= ’0’ in TIMx_CCER1 and
updated).

7 6 5 4 3 2 1 0

Reserved OC2M[2:0] OC2PE OC2FE CC2S[1:0]

rw rw rw rw rw rw

Bit 7 Reserved

Bits 6:4 OC2M: Output Compare 2 Mode

Bit 3 OC2PE: Output Compare 2 Preload Enable

Bit 2 OC2FE: Output Compare 2 Fast Enable.

Bits 1:0 CC2S: Capture/Compare 2 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.
11: Reserved

Note: CC2S bits are writable only when the channel is OFF (CC2E = ’0’ in TIMx_CCER1).

16-bit general purpose timer (TIM2/TIM3) RM0013

188/266 Doc ID 14400 Rev 5

● Channel configured in input

17.7.11 Capture/compare enable register 1 (TIMx_CCER1)

Address offset: 0x0A

Reset value: 0x00

7 6 5 4 3 2 1 0

IC2F[3:0] IC2PSC[1:0] CC2S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC2F: Input Capture 2 Filter

Bits 3:2 IC2PSC: Input Capture 2 Prescaler

Bits 1:0 CC2S: Capture/Compare 2 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.
11: Reserved

Note: CC2S bits are writable only when the channel is OFF (CC2E = ’0’ in TIMx_CCER1).

7 6 5 4 3 2 1 0

Reserved CC2P CC2E Reserved CC1P CC1E

rw rw rw rw

Bits 6:7 Reserved

Bit 5 CC2P: Capture/Compare 2 output Polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output Enable

refer to CC1E description

Bits 2:3 Reserved

Bit 1 CC1P: Capture/Compare 1 output Polarity
CC1 channel configured as output:
0 : OC1 active high
1 : OC1 active low
CC1 channel configured as input for capture function (see Figure 60):
0 : Capture is done on a rising edge of TI1F or TI2F
1 : Capture is done on a falling edge of TI1F or TI2F

Bit 0 CC1E: Capture/Compare 1 output Enable.
CC1 channel configured as output:
0 : Off - OC1 is not active.
1 : On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
In this case this bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0 : Capture disabled.
1 : Capture enabled.

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 189/266

17.7.12 Counter high (TIMx_CNTRH)

Address offset: 0x0B

Reset value: 0x00

17.7.13 Counter low (TIMx_CNTRL)

Address offset: 0x0C

Reset value: 0x00

7 6 5 4 3 2 1 0

CNT[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[15:8]: Counter value (MSB)

7 6 5 4 3 2 1 0

CNT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[7:0]: Counter value (LSB)

16-bit general purpose timer (TIM2/TIM3) RM0013

190/266 Doc ID 14400 Rev 5

17.7.14 Prescaler register (TIMx_PSCR)

Address offset: 0x0D

Reset value: 0x00

17.7.15 Auto-reload register high (TIMx_ARRH)

Address offset: 0x0E

Reset value: 0xFF

17.7.16 Auto-reload register low (TIMx_ARRL)

Address offset: 0x0F

Reset value: 0xFF

7 6 5 4 3 2 1 0

Reserved PSC[2:0]

rw rw rw

Bits 7:3 Reserved

Bits 2:0 PSC[2:0]: Prescaler value

The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency fCK_CNT is equal to fCK_PSC / 2(PSC[2:0]). PSC[7:3] are forced to 0 by
hardware.
PSCR contains the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register).
This means that an update event must be generated in order that a new prescaler value can be
taken into account.

7 6 5 4 3 2 1 0

ARR[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[15:8]: Autoreload value (MSB)
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 17.3: TIMx time base unit on page 137 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is 0.

7 6 5 4 3 2 1 0

ARR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[7:0]: Autoreload value (LSB)

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 191/266

17.7.17 Capture/compare register 1 high (TIMx_CCR1H)

Address offset: 0x10

Reset value: 0x00

17.7.18 Capture/compare register 1 low (TIMx_CCR1L)

Address offset: 0x11

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR1[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR1[15:8]: Capture/compare 1 value (MSB).
If the CC1 channel is configured as output (CC1S bits in TIMx_CCMR1 register):
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIMx_CNT
and signalled on OC1 output.
If the CC1 channel is configured as input (CC1S bits in TIMx_CCMR1 register):
CCR1 is the counter value transferred by the last input capture 1 event (IC1). It is read-only in this
case.

7 6 5 4 3 2 1 0

CCR1[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR1[7:0]: Capture/compare 1 value (LSB)

16-bit general purpose timer (TIM2/TIM3) RM0013

192/266 Doc ID 14400 Rev 5

17.7.19 Capture/compare register 2 high (TIMx_CCR2H)

Address offset: 0x12

Reset value: 0x00

17.7.20 Capture/compare register 2 low (TIMx_CCR2L)

Address offset: 0x13

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR2[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR2[15:8]: Capture/compare 2 value (MSB)
If the CC2 channel is configured as output (CC2S bits in TIMx_CCMR2 register):
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIMx_CNT
and signalled on OC2 output.
If the CC2 channel is configured as input (CC2S bits in TIMx_CCMR2 register):
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

7 6 5 4 3 2 1 0

CCR2[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR2[7:0]: Capture/compare value (LSB)

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 193/266

17.7.21 Break register (TIMx_BKR)

Address offset: 0x14

Reset value: 0x00

7 6 5 4 3 2 1 0

MOE AOE BKP BKE Reserved OSSI LOCK

rw rw rw rw rw rw rw

Bit 7 MOE: Main Output Enable.
This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by
software or automatically depending on the AOE bit. It is acting only on the channels which are
configured in output.
0: OC outputs are disabled or forced to idle state.
1: OC outputs are enabled if their respective enable bits are set (CCxE in TIMx_CCERx registers).
See OC enable description for more details (Table 34: Output control bit for OCx channels with
break feature on page 194).

Bit 6 AOE: Automatic Output Enable.

0: MOE can be set only by software
1: MOE can be set by software or automatically at the next update event (if the break input is not be
active)

Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits
in the TIMx_BKR register).

Bit 5 BKP: Break polarity.

0: Break input BKIN is active low
1: Break input BKIN is active high

Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits
in the TIMx_BKR register).

Bit 4 BKE: Break enable.

0: Break input (BKIN) disabled
1: Break input (BKIN) enabled

Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits
in the TIMx_BKR register).

Bit 3 Reserved, must be kept cleared.

Bit 2 OSSI: Off-State Selection for Idle mode.
This bit is used when MOE=0 on channels configured as outputs.
See OC enable description for more details (Table 34: Output control bit for OCx channels with
break feature on page 194).
0: When inactive, OCx outputs are disabled (OCx enable output signal=0).
1: When inactive, OCx outputs are forced first with their idle level as soon as CCxE=1. OC enable
output signal=1)

Note: This bit can no longer be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in the TIMx_BKR register).

16-bit general purpose timer (TIM2/TIM3) RM0013

194/266 Doc ID 14400 Rev 5

Note: As the bits AOE, BKP, BKE and OSSI can be write-locked depending on the LOCK
configuration, it can be necessary to configure all of them during the first write access to the
TIMx_BKR register.

Note: The state of the external I/O pins connected to the OCx channels depends on the OCx
channel state and the GPIO registers.

Bits 1:0 LOCK: Lock configuration.
These bits offer a write protection against software errors.
00: LOCK OFF - No bits are write protected.
01: LOCK Level 1 = OISx bit in TIMx_OISR register and BKE/BKP/AOE bits in TIMx_BKR register
can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP bits in TIMx_CCERx registers, as long
as the related channel is configured in output through the CCxS bits) as well as the OSSR and OSSI
bits can no longer be written.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx
registers, as long as the related channel is configured in output through the CCxS bits) can no
longer be written.

Note: The LOCK bits can be written only once after the reset. Once the TIMx_BKR register has been
written, their content is frozen until the next reset.

Table 34. Output control bit for OCx channels with break feature

Control bits

OCx/OCx_EN Output StateMOE
bit

OSSI
bit

CCxE
bit

1 X

0
Output Disabled (not driven by the timer)

OCx=CCxP, OCx_EN=0

1
OCx= OCxREF + Polarity (OCxREF xor CCxP)

OCx_EN=1

0

0 0
Output Disabled (not driven by the timer)

OCx=OISx, OCx_EN=0
0 1

1 0

1 1
Off-State (output enabled with inactive state)

OCx=OISx, OCx_EN=1

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 195/266

17.7.22 Output idle state register (TIMx_OISR)

Address offset: 0x15

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved OIS2 Reserved OIS1

rw rw

Bits 7:3 Reserved, must be kept cleared.

Bit 2 OIS2: Output Idle state 2 (OC2 output).

refer to OIS1 bit

Bit 1 Reserved, must be kept cleared.

Bit 0 OIS1: Output Idle state 1 (OC1 output).

0: OC1=0when MOE=0
1: OC1=1 when MOE=0

Note: This bit can no longer be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIMx_BKR register).

16-bit general purpose timer (TIM2/TIM3) RM0013

196/266 Doc ID 14400 Rev 5

17.7.23 TIMx register map and reset values

Refer to the datasheet for the base addresses of TIM2 and TIM3.

Table 35. TIMx register map

Address
offset

Register Name 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reset Value
ARPE

0

CMS1

0

CMS0

0

DIR

0

OPM

0

URS
0

UDIS

0

CEN

0

0x01
TIMx_CR2

Reset Value
TI1S

0

MMS2

0

MMS1

0

MMS0

0

-

0

-
0

-

0

-

0

0x02
TIMx_SMCR
Reset Value

MSM

0

TS2

0

TS1

0

TS0

0

-

0

SMS2
0

SMS1

0

SMS0

0

0x03
TIMx_ETR

Reset Value
ETP

0

ECE

0

ETPS1

0

ETPS0

0

EFT3

0

EFT2
0

EFT1

0

EFT0

0

0x04
TIMx_IER

Reset Value
BIE

0

TIE

0

-

0

-

0

-

0

CC2IE
0

CC1IE

0

UIE

0

0x05
TIMx_SR1

Reset Value
BIF

0

TIF

0

-

0

-

0

-

0

CC2IF
0

CC1IF

0

UIF

0

0x06
TIMx_SR2

Reset Value
-

0

-

0

-

0

-

0

-

0

CC2OF
0

CC1OF

0

-

0

0x07
TIMx_EGR
Reset Value

BG

0

TG

0

-

0

-

0

-

0

CC2G
0

CC1G

0

UG

0

0x08

TIMx_CCMR1
(output mode)
Reset Value

-

0

OC1M2

0

OC1M1

0

OC1M0

0

OC1PE

0

OC1FE

0

CC1S1

0

CC1S0

0

TIMx_CCMR1
(input mode)
Reset value

IC1F3

0

IC1F2

0

IC1F1

0

IC1F0

0

IC1PSC
1

0

IC1PSC
0

0

CC1S1

0

CC1S0

0

0x09

TIMx_ CCMR2
(output mode)

-

0

OC2M2

0

OC2M1

0

OC2M0

0

OC2PE

0

OC2FE

0

CC2S1

0

CC2S0

0

TIMx_CCMR2
(input mode)

IC2F3

0

IC2F2

0

IC2F1

0

IC2F0

0

IC2PSC
1

0

IC2PSC
0

0

CC2S1

0

CC2S0

0

0x0A TIMx_CCER1
-

0

-

0

CC2P

0

CC2E

0

-

0

-

0

CC1P

0

CC1E

0

0x0B TIMx_CNTRH
CNT15

0

CNT14

0

CNT13

0

CNT12

0

CNT11

0

CNT10

0
CNT9

0

CNT8

0

0x0C TIMx_CNTRL
CNT7

0

CNT6

0

CNT5

0

CNT4

0

CNT3

0

CNT2
0

CNT1

0

CNT0

0

0x0D TIMx_PSCR
-

0

-

0

-

0

-

0

-

0

PSC2
0

PSC1

0

PSC0

0

0x0E TIMx_ARRH
ARR15

1

ARR14

1

ARR13

1

ARR12

1

ARR11

1

ARR10

1
ARR9

1

ARR8

1

RM0013 16-bit general purpose timer (TIM2/TIM3)

Doc ID 14400 Rev 5 197/266

0x0F TIMx_ARRL
ARR7

1

ARR6

1

ARR5

1

ARR4

1

ARR3

1

ARR2

1
ARR1

1

ARR0

1

0x10 TIMx_CCR1H
CCR115

0

CCR114

0

CCR113

0

CCR112

0

CCR111

0

CCR110

0
CCR19

0

CCR18

0

0x11 TIMx_CCR1L
CCR17

0

CCR16

0

CCR15

0

CCR14

0

CCR13

0

CCR12

0
CCR11

0

CCR10

0

0x12 TIMx_CCR2H
CCR215

0

CCR214

0

CCR213

0

CCR212

0

CCR211

0

CCR210

0
CCR29

0

CCR28

0

0x13 TIMx_CCR2L
CCR27

0

CCR26

0

CCR25

0

CCR24

0

CCR23

0

CCR22

0
CCR21

0

CCR20

0

0x14 TIMx_BKR
MOE

0

AOE

0

BKP

0

BKE

0

OSSR

0

OSSI
0

LOCK

0

LOCK

0

0x15 TIMx_OISR
-

0 0 0 0 0

OIS2
0 0

OIS1

0

Table 35. TIMx register map (continued)

Address
offset

Register Name 7 6 5 4 3 2 1 0

8-bit basic timer (TIM4) RM0013

198/266 Doc ID 14400 Rev 5

18 8-bit basic timer (TIM4)

18.1 Introduction
The timer consists of an 8-bit auto-reload up-counter driven by a programmable prescaler. It
can be used for time base generation, with interrupt generation on timer overflow.

Refer to Section 17.3 on page 137 for the general description of the timer features.

Figure 73. TIM4 block diagram

18.2 TIM4 main features
The main features include:

● 8-bit up counter auto-reload counter

● 4-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency by any power of 2 from 1 to 32768.

● Interrupt generation

– On counter update: counter overflow

– On trigger input

18.3 TIM4 interrupts
The timer has 2 interrupt request sources:

● Update Interrupt (overflow, counter initialization)

● Trigger input

18.4 TIM4 clock selection
The clock source for the timer is the internal clock (fMASTER). It is connected directly to the
CK_PSC clock that feeds the prescaler driving the counter clock CK_CNT.

Prescaler

AutoReload Register

UP-COUNTER

UEV

Stop or Clear

UIF

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

interrupt

CK_PSC CK_CNT

fMASTER

TGI
TIM4_TRGO

to other timers
ITR = TRC= TRGITRGO from TIM3 (ITR2)

TRGO from TIM2 (ITR3)

UEV

control bit
event (UEV) according to

CLOCK/TRIGGER CONTROLLER

TIME BASE UNIT

RM0013 8-bit basic timer (TIM4)

Doc ID 14400 Rev 5 199/266

Prescaler

The prescaler implementation is as follows:

● The TIM4 prescaler is based on a 16-bit counter controlled through a 4-bit register (in
TIM4_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any power of 2 from 1 to 32768.

The counter clock frequency is calculated as follows:

fCK_CNT = fCK_PSC/2(PSCR[3:0])

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.

Read operations to the TIM4_PSCR registers access the preload registers, so no special
care needs to be taken to read them.

8-bit basic timer (TIM4) RM0013

200/266 Doc ID 14400 Rev 5

18.5 TIM4 registers

18.5.1 Control register 1 (TIM4_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

ARPE Reserved OPM URS UDIS CEN

rw rw rw rw rw

Bit 7 ARPE: Auto-Reload Preload Enable.
0: TIM4_ARR register is not buffered through a preload register. It can be written directly.
1: TIM4_ARR register is buffered through a preload register.

Bits 6:4 Reserved, must be kept cleared.

Bit 3 OPM: One Pulse Mode.

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update Request Source.

0: When enabled, an update interrupt request is sent as soon as registers are updated (counter
overflow)
1: When enabled, an update interrupt request is sent only when the counter reaches the
overflow/underflow.

Bit 1 UDIS: Update disable.

0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated. Buffered registers are then loaded with their preload values
1: An Update event is not generated, shadow registers keep their value (ARR, PSC). The counter
and the prescaler are re-initialized if the UG bit is set.

Bit 0 CEN: Counter enable.
0: Counter disable.
1: Counter enable.

RM0013 8-bit basic timer (TIM4)

Doc ID 14400 Rev 5 201/266

18.5.2 Control register 2 (TIM4_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved MMS[2:0] Reserved

rw rw rw rw rw rw

Bit 7 Reserved, must be kept cleared.

Bits 6:4 MMS: Master mode selection.

These bits select the information to be sent in master mode to other timers for synchronization
(TRGO). The combination is as follows:
000: Reset - the UG bit in the TIM4_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in trigger reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable
signal is generated by a logic OR between CEN control bit and the trigger input when configured in
gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIM4_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO).
011: Reserved
100: Reserved
101: Reserved
111: Reserved

Bits 3:0 Reserved, must be kept cleared.

8-bit basic timer (TIM4) RM0013

202/266 Doc ID 14400 Rev 5

18.5.3 Slave mode control register (TIM4_SMCR)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

MSM TS[2:0] Reserved SMS[2:0]

rw rw rw rw rw rw rw

Bit 7 MSM: Master/slave mode.
0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).

Bits 6:4 TS[2:0]: Trigger selection.

This bit-field selects the trigger input to be used to synchronize the counter.
000: reserved
001: reserved
010: internal trigger ITR2 connected to TIM3 TRGO
011: internal trigger ITR3 connected to TIM2 TRGO
100: reserved
101: reserved
110: reserved
111: reserved

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong
edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMS[2:0]: Clock/trigger/slave mode selection.
When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the
polarity selected on the external input (see Input Control register and Control Register description).
000: Clock/trigger controller disabled - if CEN = ‘1’ then the prescaler is clocked directly by the
internal clock.
001: Reserved.
010: Reserved.
011: Reserved.
100: Trigger reset mode - Rising edge of the selected trigger signal (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are
controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

RM0013 8-bit basic timer (TIM4)

Doc ID 14400 Rev 5 203/266

18.5.4 Interrupt enable register (TIM4_IER)

Address offset: 0x03

Reset value: 0x00

18.5.5 Status register 1 (TIM4_SR1)

Address offset: 0x04

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved TIE Reserved UIE

rw rw

Bit 7 Reserved, must be kept cleared.

Bit 6 TIE: Trigger Interrupt Enable.

0: Trigger Interrupt disabled.
1: Trigger Interrupt enabled.

Bits 5:1 Reserved, must be kept cleared.

Bit 0 UIE: Update Interrupt Enable.

0: Update Interrupt disabled.
1: Update Interrupt enabled.

7 6 5 4 3 2 1 0

Reserved TIF Reserved UIF

rc_w0 rc_w0

Bit 7 Reserved, must be kept cleared.

Bit 6 TIF: Trigger Interrupt Flag.

This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in
case gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bits 5:1 Reserved, must be kept cleared.

Bit 0 UIF: Update Interrupt Flag.

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– at overflow if UDIS=0 in the TIM4_CR1 register.

– when CNT is re-initialized by software using the UG bit in the TIM4_EGR register, if URS=0
and UDIS=0 in the TIM4_CR1 register.

8-bit basic timer (TIM4) RM0013

204/266 Doc ID 14400 Rev 5

18.5.6 Event generation register (TIM4_EGR)

Address offset: 0x05

Reset value: 0x00

18.5.7 Counter (TIM4_CNTR)

Address offset: 0x06

Reset value: 0x00

18.5.8 Prescaler register (TIM4_PSCR)

Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved TG Reserved UG

w w

Bit 7 Reserved, must be kept cleared.

Bit 6 TG: Trigger generation.

This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: The TIF flag is set in TIM4_SR1 register. An interrupt is generated if enabled by the TIE bit.

Bits 5:1 Reserved, must be kept cleared.

Bit 0 UG: Update generation.

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is cleared too.

7 6 5 4 3 2 1 0

CNT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[7:0]: Counter Value

7 6 5 4 3 2 1 0

Reserved PSC[3:0]

rw rw rw rw

Bits 7:4 Reserved, must be kept cleared

Bits 3:0 PSC[3:0]: Prescaler value.

The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency fCK_CNT is equal to fCK_PSC / 2

(PSC[3:0]).
PSC contains the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIM4_EGR register).
This means that an update event must be generated in order that a new prescaler value can be
taken into account.

RM0013 8-bit basic timer (TIM4)

Doc ID 14400 Rev 5 205/266

18.5.9 Auto-reload register (TIM4_ARR)

Address offset: 0x08

Reset value: 0xFF

7 6 5 4 3 2 1 0

ARR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[7:0]: Autoreload Value

8-bit basic timer (TIM4) RM0013

206/266 Doc ID 14400 Rev 5

18.5.10 TIM4 register map and reset values

Refer to the datasheet for the base address.

Table 36. TIM4 register map

Address

offset
Register name 7 6 5 4 3 2 1 0

0x00
TIM4_CR1
Reset Value

ARPE

0

-

0

-

0

-

0

OPM

0

URS
0

UDIS

0

CEN

0

0x01
TIM4_CR2
Reset Value

-

0

MMS2

0

MMS1

0

MMS0

0

-

0

-
0

-

0

-

0

0x02
TIM4_SMCR
Reset Value

MSM

0

TS2

0

TS1

0

TS0

0

-

0

SMS2
0

SMS1

0

SMS0

0

0x03
TIM4_IER

Reset Value
-

0

TIE

0

-

0

-

0

-

0

-

0
-

0

UIE

0

0x04
TIM4_SR1

Reset Value
-

0

TIF

0

-

0

-

0

-

0

-

0
-

0

UIF

0

0x05
TIM4_EGR
Reset Value

-

0

TG

0

-

0

-

0

-

0

-

0
-

0

UG

0

0x06
TIM4_CNTR
Reset Value

CNT7

0

CNT6

0

CNT5

0

CNT4

0

CNT3

0

CNT2
0

CNT1

0

CNT0

0

0x07
TIM4_PSCR
Reset Value

-

0

-

0

-

0

-

0

PSC3

0

PSC2
0

PSC1

0

PSC0

0

0x08
TIM4_ARR
Reset Value

ARR7

1

ARR6

1

ARR5

1

ARR4

1

ARR3

1

ARR2

1
ARR1

1

ARR0

1

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 207/266

19 Serial peripheral interface (SPI)

19.1 Introduction
The serial peripheral interface (SPI) allows half/ full duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multi-master configuration.

19.2 SPI main features
● Full duplex synchronous transfers (on 3 lines)

● Simplex synchronous transfers on 2 lines with or without a bidirectional data line

● Master or slave operation

● 8 Master mode frequencies (fMASTER/2 max.)

● Slave mode frequency (fMASTER/2 max.)

● Faster communication - Maximum SPI speed: 10 MHz

● NSS management by hardware or software for both master and slave

● Programmable clock polarity and phase

● Programmable data order with MSB-first or LSB-first shifting

● Dedicated transmission and reception flags with interrupt capability

● SPI bus busy status flag

● Master mode fault and overrun flags with interrupt capability

● Wakeup capability:
The MCU wakes up from low power mode in full or half duplex transmit-only modes

Serial peripheral interface (SPI) RM0013

208/266 Doc ID 14400 Rev 5

19.3 SPI functional description

19.3.1 General description

The block diagram of the SPI is shown in Figure 74.

Figure 74. SPI block diagram

The SPI is connected to external devices through four pins:

● MISO: Master In / Slave Out data (port C7). This pin can be used to transmit data in
slave mode and receive data in master mode.

● MOSI: Master Out / Slave In data (port C6). This pin can be used to transmit data in
master mode and receive data in slave mode.

● SCK: Serial Clock output (port C5) for SPI masters and Serial Clock input for SPI
slaves.

● NSS: Slave select (port E5). This is a optional pin to select a slave device. This pin acts
as a ‘chip select’ to let the SPI master communicate with slaves individually and to
avoid contention on the data lines. Slave NSS inputs can be driven by standard I/O
ports on the master device. When configured in master mode (MSTR bit =1) and if NSS
is pulled low, the SPI enters master mode fault state: the MSTR bit is automatically

RX BUFFER

TX BUFFER

SHIFT REGISTER

LSBFirst

READ

WRITE

ADDRESS AND DATA BUS

MOSI

MISO

BAUD RATE GENERATORSCK

MASTER CONTROL LOGIC

COMMUNICATION

CONTROL

SPE BR2 BR1 BR0 MSTRCPOL CPHA

BR[2:0]

RXIE

LSB

BIDI
MODE

BIDI
OE

RX
SSM SSI

OVR MOD RXNETXE

ERR
TXIE

WK 0

0

0 0WKIE

ONLY

0

1

NSS

IE

F UP

FIRST

BSY

fMASTER

0

0

0 0

0

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 209/266

reset and the device is configured in slave mode (refer to Section 19.3.8: Error flags on
page 222).

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 75.

Note: When using the SPI in High-speed mode, the I/Os where SPI outputs are connected should
be programmed as fast slope outputs in order to be able to reach the expected bus speed.

Figure 75. Single master/ single slave application

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via MOSI pin, the slave device responds the MISO pin. This implies
full duplex communication with both data out and data in synchronized with the same clock
signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

As an alternative to using the NSS pin to control the Slave Select signal (NSS pin, port E5),
the application can choose to manage the Slave Select signal by software. This is
configured by the SSM bit in the SPI_CR2 register (see Figure 76). In software
management, the external NSS pin is free for other application uses and the internal NSS
signal level is driven by writing to the SSI bit in the SPI_CR2 register.

Figure 76. Hardware/software slave select management

8-BIT SHIFT REGISTER

SPI
CLOCK

GENERATOR

8-BIT SHIFT REGISTER
MISO

MOSI MOSI

MISO

SCK SCK

SLAVEMASTER

NSS NSSVDD

MSBit LSBit MSBit LSBit

Not used if NSS is managed
 by software

1

0

NSS Internal

SSM bit

SSI bit

 NSS external pin

Serial peripheral interface (SPI) RM0013

210/266 Doc ID 14400 Rev 5

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits. The CPOL (clock polarity) bit controls the steady state value of the clock when no data
is being transferred. This bit affects both master and slave modes. If CPOL is reset, SCK pin
has a low level idle state. If CPOL is set, SCK pin has a high level idle state.

Note: Make sure the SPI pin is configured at the idle state level of the SPIin order to avoid
generating an edge on the SPI clock pin when enabling or disabling the SPI cell.

If CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the CPOL
bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data is latched on
the occurrence of the first clock transition. If CPHA bit is reset, the first edge on the SCK pin
(falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the MSBit capture strobe.
Data is latched on the occurrence of the second clock transition.

The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 77, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the
MISO pin, the MOSI pin are directly connected between the master and the slave device.

Note: 1 Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

2 Master and slave must be programmed with the same timing mode.

3 The idle state of SCK must correspond to the polarity selected in the SPI_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 211/266

Figure 77. Data clock timing diagram

1. These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

Frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 Register.

CPOL = 1

CPOL = 0

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO

MOSI

NSS

(to slave)

CAPTURE STROBE

CPHA =1

CPOL = 1

CPOL = 0

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO

MOSI

NSS
(to slave)

CAPTURE STROBE

CPHA =0

Serial peripheral interface (SPI) RM0013

212/266 Doc ID 14400 Rev 5

19.3.2 Configuring the SPI in slave mode

In slave configuration, the serial clock is received on the SCK pin from the master device.
The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data transfer
rate.

Follow the procedure below to configure the SPI in slave mode:

1. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 77). For correct data transfer, the CPOL
and CPHA bits must be configured in the same way in the slave device and the master
device.

2. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be the same as the master device.

3. In Hardware mode (refer to Slave select (NSS) pin management on page 209), the
NSS pin must be connected to a low level signal during the complete data transmit
sequence. In NSS Software mode, set the SSM bit and clear the SSI bit in the
SPI_CR2 register.

4. Clear the MSTR bit and set the SPE bit to assign the pins to alternate functions.

In this configuration the MOSI pin is a data input and the MISO pin is a data output.

Note: In applications with a parallel multi-slave structure, with separate NSS signals and the slave
MISO outputs connected together, the corresponding GPIO registers must be configured
correctly. The MISO pin is controlled by the SPI_MISO alternate function only when the NSS
signal is active and the device is selected as slave. When the NSS signal is released, control
of the pin is driven by GPIO register settings only. To function correctly, the GPIO has to be
configured in input pull_up mode with no interrupt. This configuration is done using the
GPIO_ODR, GPIO_DDR and GPIO_CR2 registers - see Section 10.8.1: Alternate function
output.

19.3.3 Configuring the SPI master mode

In a master configuration, the serial clock is generated on the SCK pin.

Follow the procedure below to configure the SPI in master mode:

1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 77).

3. Configure the LSBFIRST bit in the SPI_CR1 register to define the frame format.

4. In Hardware mode, connect the NSS pin to a high-level signal during the complete data
transmit sequence. In software mode, set the SSM and SSI bits in the SPI_CR2
register.

5. Set the MSTR and SPE bits (they remain set only if the NSS pin is connected to a high-
level signal).

In this configuration the MOSI pin is a data output and to the MISO pin is a data input.

19.3.4 Configuring the SPI for simplex communications

The SPI is capable of operating in simplex mode in 2 configurations.

● 1 clock and 1 bidirectional data wire

● 1 clock and 1 data wire (Receive-only or Transmit-only)

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 213/266

1 clock and 1 bidirectional data wire

This mode is enabled by setting the BDM bit in the SPI_CR2 register. In this mode SCK is
used for the clock, and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/output) is selected by the BDOE bit in the
SPI_CR2 register. When this bit is set to 1, the data line is output, otherwise it is input.

1 clock and 1 unidirectional data wire (BDM = 0)

In this mode, the application can use the SPI either in transmit-only mode or in receive-only
mode:

● Transmit-only mode is similar to full-duplex mode (BDM = 0, RXONLY = 0): the data is
transmitted to the transmit pin (MOSI in master mode or MISO in slave mode) and the
receive pin (MISO in master mode or MOSI in slave mode) can be used as general
purpose I/O. In this case, the application just needs to ignore the Rx buffer (if the data
register is read, it does not contain the received value).

● In receive-only mode, the application can disable the SPI output function by setting the
RXONLY bit in the SPI_CR2 register. In this case, it frees the transmit I/O pin (MOSI in
master mode or MISO in slave mode) so it can be used for other purposes.

To start the communication in receive-only mode, configure and enable the SPI:

● In master mode, the communication starts immediately and stops when the SPE bit is
reset and the current reception stops. There is no need to read the BSY flag in this
mode. It is always set when an SPI communication is ongoing.

● In slave mode, the SPI continues to receive as long as the NSS is pulled down (or the
SSI bit is reset in NSS software mode) and the SCK is running.

19.3.5 Data transmission and reception procedures

Rx and Tx buffer

In reception, data are received and then stored into an internal Rx buffer while In
transmission, data are first stored into an internal Tx buffer before being transmitted.

A read access of the SPI_DR register returns the Rx buffered value whereas a write access
of the SPI_DR stores the written data into the Tx buffer.

Serial peripheral interface (SPI) RM0013

214/266 Doc ID 14400 Rev 5

Start sequence in master mode

● In full-duplex (BDM = 0 and RXONLY = 0)

– The sequence begins when data is written into the SPI_DR register (Tx buffer).

– The data is then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– At the same time, the received data on MISO pin is shifted in serially to the 8-bit
shift register and then parallel loaded into the SPI_DR register (Rx Buffer).

● In unidirectional receive-only mode (BDM = 0 and RXONLY = 1)

– The sequence begins as soon as the bit SPE = 1

– Only the receiver is activated and the received data on MISO pin is shifted in
serially to the 8-bit shift register and then parallel loaded into the SPI_DR register
(Rx Buffer).

● In bidirectional mode, when transmitting (BDM = 1 and BDOE = 1)

– The sequence begins when a data is written into the SPI_DR register (Tx buffer).

– The data is then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– No data is received.

● In bidirectional mode, when receiving (BDM = 1 and BDOE = 0)

– The sequence begins as soon as SPE = 1 and BDOE = 0.

– The received data on MOSI pin is shifted in serially to the 8-bit shift register and
then parallel loaded into the SPI_DR register (Rx Buffer).

– The transmitter is not activated and no data is shifted out serially to the MOSI pin.

Start sequence in slave mode

● In full-duplex (BDM=0 and RXONLY=0)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The remaining 7 bits are loaded into the shift
register.

– At the same time, the data is parallel loaded from the Tx buffer into the 8-bit shift
register during the first bit transmission and then shifted out serially to the MISO
pin. The software must have written the data to be sent before the SPI master
device initiates the transfer.

● In unidirectional receive-only mode (BDM = 0 and RXONLY = 1)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The remaining 7 bits are loaded into the shift
register.

– The transmitter is not activated and no data is shifted out serially to the MISO pin.

● In bidirectional mode, when transmitting (BDM = 1 and BDOE = 1)

– The sequence begins when the slave device receives the clock signal and the first
bit of the Tx buffer is transmitted to the MISO pin.

– The data is then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MISO pin. The

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 215/266

software must have written the data to be sent before the SPI master device starts
the transfer.

– no data is received.

● In bidirectional mode, when receiving (BDM = 1 and BDOE = 0)

– The sequence starts when the slave device receives the clock signal and the first
bit of the data to its MISO pin.

– The data received on MISO pin is shifted in serially to the 8-bit shift register and
then parallel loaded into the SPI_DR register (Rx Buffer).

– The transmitter is not activated and no data is shifted out serially to the MISO pin.

Handling data transmission and reception

The TXE flag (Tx buffer empty) is set when the data is transferred from the Tx buffer to the
shift register. It indicates that the internal Tx buffer is ready to be loaded with the next data.
An interrupt can be generated if TXIE bit in the SPI_ICR register is set.

Note: The software must ensure that TXE flag is set to 1 before attempting to write into the Tx
buffer. Otherwise, it will overwrite the data which was previously written in the Tx buffer.

The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data
is transferred from the shift register to the Rx buffer. It indicates that a data is ready to be
read from the SPI_DR register. An interrupt can be generated if RXIE bit in the SPI_ICR
register is set. Clearing the RXNE bit is performed by reading the SPI_DR register.

In some configurations, the BSY flag can be used during the last data transfer to wait until
the completion of the transfer.

Full Duplex Transmit and receive procedure in master or slave mode
(BDM=0 and RXONLY = 0)

1. Enable the SPI by setting the SPE bit

2. Write the first data to be transmitted in the SPI_DR register (this clears the TXE flag).

3. Wait until TXE = 1 and write the second data to be transmitted. Then wait until RXNE =
1 and read the SPI_DR to get the first received data (this clears the RXNE bit). Repeat
this operation for each data to be transmitted/received until the n-1 received data.

4. Wait until RXNE = 1 and read the last received data.

5. Wait until TXE = 1 and then wait until BSY = 0 before disabling the SPI.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edge of RXNE or TXE flags.

Serial peripheral interface (SPI) RM0013

216/266 Doc ID 14400 Rev 5

Figure 78. TXE/RXNE/BSY behavior in full duplex mode (RXONLY = 0).
Case of continuous transfers

Figure 79. TXE/RXNE/BSY behavior in slave / full duplex mode
(BDM = 0, RXONLY = 0). Case of continuous transfers

MISO/MOSI (in)

Tx Buffer

DATA1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
in SPI_DR

software waits
until TXE=1 and
writes 0xF2 in

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hw
cleared by sw

set by hw
cleared by sw set by hw

set by hw

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hw

Example in Master Mode with CPOL=1, CPHA=1

0xF1

 RXNE flag

(write SPI_DR)

Rx Buffer

set by hw cleared by sw

MISO/MOSI (out)
DATA1 = 0xF1 DATA2 = 0xF2 DATA3 = 0xF3

(read SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 in

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

0xF1

set by hw

MISO/MOSI (in)

Tx Buffer

DATA 1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
in SPI_DR

software waits
until TXE=1 and
writes 0xF2 in

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hw
cleared by sw

set by hw
cleared by sw set by hw

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hw

Example in Slave Mode with CPOL=1, CPHA=1

 RXNE flag

(write SPI_DR)

Rx Buffer

set by hw cleared by sw

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

(read SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 in

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 217/266

Transmit-only procedure (BDM = 0 RXONLY = 0)

In this mode, the procedure can be reduced as described below and the BSY bit can be
used to wait until the effective completion of the transmission (see Figure 78 and Figure 79):

1. Enable the SPI by setting the SPE bit

2. Write the first data to send in the SPI_DR register (this clears the TXE bit).

3. Wait until TXE = 1 and write the next data to be transmitted. Repeat this step for each
data to be transmitted.

4. After writing the last data in the SPI_DR register, wait until TXE = 1 and then wait until
BSY=0 which indicates that the transmission of the last data is complete.

This procedure can be also implemented using dedicated interrupt subroutines launched at
each rising edge of TXE flag.

Note: 1 In master mode, during discontinuous communications, there is a 2 CPU clock period delay
between the write operation to SPI_DR and the BSY bit setting. As a consequence, in
transmit-only mode, it is mandatory to wait first until TXE is set and then until BSY is reset
after having written the last data.

2 After transmitting two data in transmit-only mode, the OVR flag is set in the SPI_SR register
since the received data are never read.

Figure 80. TXE/BSY in master transmit-only mode
(BDM = 0 and RXONLY = 0). Case of continuous transfers

0xF1Tx Buffer

 TXE flag

0xF2

 BSY flag

0xF3

software writes
0xF1 in SPI_DR

software waits
until TXE=1 and
writes 0xF2 in

SPI_DR

set by hw
cleared by sw

set by hw
cleared by sw set by hw

set by hw

SCK

reset by hw

Example in master mode with CPOL=1, CPHA=1

(write SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software waits
until TXE=1 and
writes 0xF3 in

SPI_DR

software waits until BSY=0software waits until TXE=1

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

Serial peripheral interface (SPI) RM0013

218/266 Doc ID 14400 Rev 5

Figure 81. TXE/BSY in slave transmit-only mode (BDM = 0 and RXONLY = 0).
Case of continuous transfers

Bidirectional transmit procedure (BDM = 1 and BDOE = 1)

In this mode, the procedure is similar to the Transmit-only procedure except that the BDM
and BDOE bits must both be set in the SPI_CR2 register before enabling the SPI.

Unidirectional receive-only procedure (BDM = 0 and RXONLY = 1)

In this mode, the procedure can be reduced as described below (see Figure 82):

1. Set the RXONLY bit in the SPI_CR2 register

2. Enable the SPI by setting bit SPE to 1:

a) In master mode, this immediately activates the generation of the SCK clock, and
data is received serially until the SPI is disabled (SPE = 0).

b) In slave mode, data are received when the SPI master device drives NSS low and
generates the SCK clock.

3. Wait until RXNE =1 and read the SPI_DR register to get the received data (this clears
the RXNE bit). Repeat this operation for each data to be received.

This procedure can be also implemented using dedicated interrupt subroutines launched at
each rising edge of the RXNE flag.

Note: If it is required to disable the SPI after the last transfer, follow the recommendation described
in Section 19.3.7: Disabling the SPI on page 221.

0xF1Tx Buffer

 TXE flag

0xF2

 BSY flag

0xF3

software writes
0xF1 in SPI_DR

software waits
until TXE=1 and
writes 0xF2 in

SPI_DR

set by hw
cleared by sw

set by hw
cleared by sw set by hw

set by hw

SCK

reset by hw

Example in slave mode with CPOL=1, CPHA=1

(write SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software waits
until TXE=1 and
writes 0xF3 in

SPI_DR

software waits until BSY=0software waits until TXE=1

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 219/266

Figure 82. RXNE behavior in receive-only mode (BDM = 0 and RXONLY = 1).
Case of continuous transfers

Bidirectional receive procedure (BDM = 1 and BDOE = 0)

In this mode, the procedure is similar to the Receive-only procedure except that the BDM bit
must be set and the BDOE bit must be reset in the SPI_CR2 register before enabling the
SPI.

Continuous and discontinuous transfers

When transmitting data in master mode, if the software is fast enough to detect each TXE
rising edge (or TXE interrupt) and to immediately write the SPI_DR register before the
ongoing data transfer is complete, the communication is said to be continuous. In this case,
there is no discontinuity in the generation of the SPI clock between each data and the BSY
bit will never be reset between each data transfer.

On the contrary, if the software is not fast enough, this can lead to some discontinuities in
the communication. In this case, the BSY bit is reset between each data transmission (see
Figure 83).

In master receive-only mode (BDM = 0 and RXONLY = 1) or in bidirectional receive mode
(BDM = 1 and BDOE = 0), the communication is always continuous and the BSY flag is
always read at 1.

In slave mode, the continuity of the communication is decided by the SPI master device. But
even if the communication is continuous, the BSY flag goes low between each transfer for a
minimum duration of one SPI clock cycle (see Figure 79).

MISO/MOSI (in)
DATA 1 = 0xA1

software waits until RXNE=1
and reads 0xA1 from SPI_DR

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

Example with CPOL=1, CPHA=1, RXONLY=1

 RXNE flag

Rx Buffer

set by hw cleared by sw

(read SPI_DR)
0xA1 0xA2 0xA3

software waits until RXNE=1
and reads 0xA2 from SPI_DR

software waits until RXNE=1
and reads 0xA3 from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

Serial peripheral interface (SPI) RM0013

220/266 Doc ID 14400 Rev 5

Figure 83. TXE/BSY behavior when transmitting (BDM = 0 and RXLONY = 0).
Case of discontinuous transfers

19.3.6 Status flags

There are three status flags to allow the application to completely monitor the state of the
SPI bus.

Tx buffer empty flag (TXE)

When set, this flag indicates that the Tx buffer is empty and that the next data to be
transmitted can be loaded into the buffer. The TXE flag is reset when writing the SPI_DR
register.

Rx buffer not empty (RXNE)

When set, this flag indicates that there is a valid received data in the Rx buffer. This flag is
reset when SPI_DR is read.

Busy flag (BSY)

This BSY flag is set and reset by hardware (writing to this flag has no effect). The BSY flag
indicates the state of the communication layer of the SPI.

When BSY is set, it indicates that the SPI is busy communicating. There is one exception in
master mode / bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0) where the
BSY flag is kept low during the reception.

The BSY flag is useful to detect the end of a transfer if the software wants to disable the SPI
and enters Halt mode (or disable the peripheral clock). This will avoid corrupting the last
transfer. For this, the procedure described below must be strictly respected.

The BSY flag is also useful to avoid write collisions in a multimaster system.

The BSY flag is set when a transfer starts with the exception of master mode / bidirectional
receive mode (MSTR = 1 and BDM = 1 and BDOE = 0).

MOSI (out)

Tx buffer

DATA 1 = 0xF1

 TXE flag

0xF1

 BSY flag

0xF2

software writes 0xF1
into SPI_DR

software waits until TXE=1 but is
late to write 0xF2 into SPI_DR

software waits until TXE=1 but
is late to writes 0xF3 into

SPI_DR

SCK

DATA 2 = 0xF2 DATA 3 = 0xF3

Example with CPOL=1, CPHA = 1

0xF3

software waits
until TXE=1

software waits until BSY=0

(write SPI_DR)

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 221/266

It is reset:

● when a transfer is finished (except in master mode if the communication is continuous)

● when the SPI is disabled

● when a master mode fault occurs (MODF = 1)

When communication is not continuous, the BSY flag is low between each communication.

When communication is continuous, in master mode, the BSY flag is kept high during the
whole transfers.

When communication is continuous, in slave mode, the BSY flag goes back to low state for
one SPI clock cycle between each transfer.

Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use
TXE and RXNE flags instead.

19.3.7 Disabling the SPI

When a transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by resetting the SPE bit.

For some configurations, disabling the SPI and entering Halt mode while a transfer is on-
going, can cause the current transfer to be corrupted and/or it can happen that the BSY flag
becomes unreliable.

To avoid any of these effects, it is recommended to respect the following procedure when
disabling the SPI:

In master or slave full duplex mode (BDM = 0, RXONLY = 0):

1. Wait until RXNE = 1 to receive the last data

2. Wait until TXE = 1

3. Then wait until BSY = 0

4. Disable the SPI (SPE = 0) and eventually enter Halt mode (or disable the peripheral
clock).

In master or slave unidirectional transmit-only mode (BDM = 0, RXONLY = 0)
or bidirectional transmit mode (BDM = 1, BDOE = 1):

After the last data is written in the SPI_DR register:

1. Wait until TXE = 1

2. Then wait until BSY = 0

3. Disable the SPI (SPE = 0) and, if desired, enter Halt mode (or disable the peripheral
clock).

Serial peripheral interface (SPI) RM0013

222/266 Doc ID 14400 Rev 5

In master unidirectional receive-only mode (MSTR = 1, BDM = 0, RXONLY = 1)
or bidirectional receive mode (MSTR = 1, BDM = 1, BDOE = 0):

This case must be managed in a particular way to ensure that the SPI does not initiate a
new transfer:

1. Wait for the second to last occurrence of RXNE = 1 (n-1)

2. Then wait for one SPI clock cycle (using a software loop) before disabling the SPI
(SPE = 0)

3. Then wait for the last RXNE=1 before entering Halt mode (or disabling the peripheral
clock).

Note: In master bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0), the BSY flag is
kept low during a transfer.

In slave receive-only mode (MSTR = 0, BDM = 0, RXONLY = 1) or bidirectional
receive mode (MSTR = 0, BDM = 1, BDOE = 0):

1. You can disable the SPI (write SPE = 1) whenever you want: the current transfer will
complete before being effectively disabled.

2. Then, if you want to enter Halt mode, you must first wait until BSY = 0 before entering
Halt mode (or disabling the peripheral clock).

19.3.8 Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in NSS
hardware mode) or SSI bit low (in NSS software mode), this automatically sets the MODF
bit. Master mode fault affects the SPI peripheral in the following ways:

● The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

● The SPE bit is reset. This blocks all output from the device and disables the SPI
interface.

● The MSTR bit is reset, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPI_SR register while the MODF bit is set.

2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence.

As a security, hardware does not allow you to set the SPE and MSTR bits while the MODF
bit is set.

In a slave device the MODF bit cannot be set. However, in a multi-master configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates that
there might have been a multimaster conflict for system control. You can use an interrupt
routine to recover cleanly from this state by performing a reset or returning to a default state.

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 223/266

Overrun condition

An overrun condition occurs, when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

● OVR bit is set and an interrupt is generated if the ERRIE bit is set.

In this case, the receiver buffer contents will not be updated with the newly received data
from the master device. A read to the SPI_DR register returns this byte. All other
subsequently transmitted bytes are lost.

Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read
access to the SPI_SR register.

19.3.9 SPI low power modes

Table 37. SPI behavior in low power modes

Mode Description

Wait
No effect on SPI.
SPI interrupt events cause the device to exit from Wait mode.

Halt

SPI registers are frozen.
In Halt mode, the SPI is inactive. If the SPI is in master mode, then
communication resumes when the device is woken up by an interrupt with
“wakeup from Halt mode” capability.

If the SPI is in slave mode, then it can wake up the MCU from Halt mode after
detecting the first sampling edge of data.

Serial peripheral interface (SPI) RM0013

224/266 Doc ID 14400 Rev 5

Using the SPI to wake up the device from Halt mode

When the microcontroller is in Halt mode, the SPI is still capable of responding as a slave
provided the NSS pin is tied low or the SSI bit is reset before entering Halt mode.

When the first sampling edge of data (as defined by the CPHA bit) is detected:

● The WKUP bit is set in the SPI_SR register

● An interrupt is generated if the WKIE bit in the SPI_ICR register is set.

● This interrupt wakes up the device from Halt mode.

● Due to the time needed to restore the system clock, the SPI slave sends or receives a
few data before being able to communicate correctly. It is then mandatory to use the
following protocol:

– a specific value is written into the SPI_DR before entering Halt mode. This value
indicates to the external master that the SPI is in Halt mode

– The external master sends the same byte continuously until it receives from the
SPI slave device a new value other than the unique value indicating the SPI is in
Halt mode. This new value indicates the SPI slave has woken-up and can correctly
communicate.

Restrictions in receive-only modes

The wake-up functionality is not guaranteed in receive-only modes (BDM = 0 and
RXONLY = 1 or BDM = 1 and BDOE = 0) since the time needed to restore the system clock
can be greater than the data reception time. A loss of data in reception would then be
induced and the slave device can not indicate to the master which data has been properly
received.

19.3.10 SPI interrupts

Table 38. SPI interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

Transmit buffer empty flag TXE TXIE Yes No

Receive buffer not empty flag RXNE RXIE Yes No

Wakeup event flag WKUP WKIE Yes Yes

Master mode fault event MODF
ERRIE

Yes No

Overrun error OVR Yes No

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 225/266

19.4 SPI registers

19.4.1 SPI control register 1 (SPI_CR1)

Address offset: 0x00

Reset value: 0x00
7 6 5 4 3 2 1 0

LSBFIRST SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw

Bit 7 LSBFIRST: Frame format (1)

0: MSB is transmitted first
1: LSB is transmitted first

Bit 6 SPE: SPI Enable (2)

0: Peripheral disabled
1: Peripheral enabled

Bits 5:3 BR[2:0]: Baud rate control
000: fMASTER/2
001: fMASTER/4
010: fMASTER/8
011: fMASTER/16
100: fMASTER/32
101: fMASTER/64
110: fMASTER/128
111: fMASTER/256

Note: These bits should not be changed when the communication is ongoing.

Bit 2 MSTR: Master selection (1)

0: Slave configuration
1: Master configuration

Bit1 CPOL: Clock polarity (1)

0: SCK to 0 when idle
1: SCK to 1 when idle

Bit 0 CPHA: Clock phase (1)

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

1. This bit should not be changed when the communication is ongoing.

2. When disabling the SPI, follow the procedure described in Section 19.3.7: Disabling the SPI on page 221

Serial peripheral interface (SPI) RM0013

226/266 Doc ID 14400 Rev 5

19.4.2 SPI control register 2 (SPI_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

BDM BDOE Reserved Reserved
Reserved

RXOnly SSM SSI

rw rw r r rw rw rw

Bit 7 BDM: Bidirectional data mode enable

0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

Bit 6 BDOE: Input/Output enable in bidirectional mode

This bit selects the direction of transfer in bidirectional mode when BDM is set to 1.

0: Input enabled (receive-only mode)
1: Output enabled (transmit-only mode)
In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.

Bits 5:3 Reserved, must be kept cleared.

Bit 2 RXONLY: Receive only
0: Full duplex (Transmit and receive)
1: Output disabled (Receive only mode)

This bit combined with BDM bit selects the direction of transfer in 2 line uni-directional mode

This bit is also useful in a multi-slave system in which this particular slave is not accessed, the output
from the accessed slave is not corrupted.

Bit 1 SSM: Software slave management

0: Software slave management disabled
1: Software slave management enabled

When the SSM bit is set, the NSS pin input is replaced with the value coming from the SSI bit

Bit 0 SSI: Internal slave select

This bit has effect only when SSM bit is set. The value of this bit is forced onto the NSS pin and the I/O
value of the NSS pin is ignored.

0: Slave mode
1: Master mode

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 227/266

19.4.3 SPI interrupt control register (SPI_ICR)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

TXIE RXIE ERRIE WKIE
Reserved

rw rw rw rw

Bit 7 TXIE: Tx buffer empty interrupt enable

0: TXE interrupt masked
1: TXE interrupt not masked. This allows a interrupt request to be generated when the TXE flag is
set.

Bit 6 RXIE: RX buffer not empty interrupt enable
0: RXNE interrupt masked
1: RXNE interrupt not masked. This allows a interrupt request to be generated when the RXNE flag
is set.

Bit 5 ERRIE: Error interrupt enable

0: Error interrupt is masked
1: Error interrupt is enabled. This allows a interrupt request to be generated when an error condition
occurs (OVR, MODF)

Bit 4 WKIE: Wakeup interrupt enable
0: wakeup interrupt masked
1: wakeup interrupt enabled. This allows a interrupt request to be generated when the WKUP flag is
set.

Bits 3:0 Reserved, must be kept cleared.

Serial peripheral interface (SPI) RM0013

228/266 Doc ID 14400 Rev 5

19.4.4 SPI status register (SPI_SR)

Address offset: 0x03

Reset value: 0x02

7 6 5 4 3 2 1 0

BSY OVR MODF Reserved WKUP Reserved TXE RxNE

r rc_w0 rc_w0 rc_w0 rc_w0 r r r

Bit 7 BSY: Busy flag

0: SPI not busy
1: SPI is busy in communication

This flag is set and reset by hardware.
Note: BSY flag must be used with cautious: refer to Section 19.3.6: Status flags on page 220 and

Section 19.3.7: Disabling the SPI on page 221

Bit 6 OVR: Overrun flag

0: No Overrun occurred
1: Overrun occurred

This flag is set by hardware and reset by a software sequence.

Bit 5 MODF: Mode fault

0: No Mode fault occurred
1: Mode fault occurred

This flag is set by hardware and reset by a software sequence.

Bit 4 Reserved, must be kept cleared.

Bit 3 WKUP: Wakeup Flag

0: No wakeup event occurred
1: Wakeup event occurred

This flag is set on the first sampling edge on SCK when the STM8 is in Halt mode and the SPI is
configured as slave.
This flag is reset by software writing 0.

Bit 2 Reserved, must be kept cleared.

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RxNE: Receive buffer not empty

0: Rx buffer empty
1: Rx buffer not empty

RM0013 Serial peripheral interface (SPI)

Doc ID 14400 Rev 5 229/266

19.4.5 SPI data register (SPI_DR)

Address offset: 0x04

Reset value: 0x00

19.5 SPI register map and reset values

7 6 5 4 3 2 1 0

DR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DR[7:0]: Data register

Byte received or to be transmitted.

The data register is split into 2 buffers - one for writing (Transmit buffer) and another one for reading
(Receive buffer). A write to the data register will write into the Tx buffer and a read from the data
register will return the value held in the Rx buffer.

Table 39. SPI register map and reset values

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00
SPI_CR1

reset value
LSBFirst

0
SPE

0
BR2

0
BR1

0
BR1

0
MSTR

0
CPOL

0
CPHA

0

0x01
SPI_CR2

reset value
BDM

0
BDOE

0
Reserved

0
Reserved

0
Reserved

0
RXONLY

0
SSM

0
SSI
0

0x02
SPI_ICR

reset value
TXIE

0
RXIE

0
ERRIE

0
WKIE

0
Reserved

0
Reserved

0
Reserved

0
Reserved

0

0x03
SPI_SR

reset value
BSY

0
OVR

0
MODF

0
Reserved

0
WKUP

0
Reserved

0
TXE

1
RXNE

0

0x04
SPI_DR

reset value
MSB

0
-
0

-
0

-
0

-
0

-
0

-
0

LSB
0

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

230/266 Doc ID 14400 Rev 5

20 Universal synchronous/asynchronous receiver
transmitter (USART)

20.1 USART introduction
The USART (universal synchronous asynchronous receiver transmitter) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format. It offers a very wide range of baud rates.

The USART supports synchronous one-way communication. The USART can also be used
for multiprocessor communication.

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 231/266

20.2 USART main features
● Full duplex, asynchronous communications

● NRZ standard format (Mark/Space)

● High-precision baud rate generator system

– Common programmable transmit and receive baud rates up to fMASTER/16

● Programmable data word length (8 or 9 bits)

● Configurable STOP bits - support for 1 or 2 STOP bits

● Transmitter clock output for synchronous communication

● Separate enable bits for Transmitter and Receiver

● Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– End of Transmission flags

● Parity control:

– Transmits parity bit

– Checks parity of received data byte

● 4 error detection flags:

– Overrun error

– Noise error

– Frame error

– Parity error

● 5 interrupt sources with flags:

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Parity error

● 2 interrupt vectors:

– Transmitter interrupt

– Receiver interrupt

● Reduced power consumption mode

● Multi-Processor communication - enter into mute mode if address match does not
occur

● Wakeup from mute mode (by idle line detection or address mark detection)

● 2 receiver wakeup modes:

– Address bit (MSB)

– Idle line

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

232/266 Doc ID 14400 Rev 5

20.3 USART functional description
The interface is externally connected to another device by three pins (see Figure 84). Any
USART bidirectional communication requires a minimum of two pins: USART Receive data
input (USART_RX) and USART transmit data output (USART_TX):

USART_RX is the serial data input. Over-sampling techniques are used for data recovery by
discriminating between valid incoming data and noise.

USART_TX is the serial data output. When the transmitter is disabled, the output pin returns
to its I/O port configuration. When the transmitter is enabled and nothing is to be
transmitted, the pin is at high level.

Through these pins, serial data is transmitted and received in normal USART mode as
frames including:

● An Idle Line prior to transmission or reception

● A start bit

● A data word (8 or 9 bits) least significant bit first

● 1 and 2 STOP bits indicating that the frame is complete

● A status register (USART_SR)

● Data register (USART_DR)

● 16-bit baud rate prescaler (USART_BRR)

Refer to the register description for the definitions of each bit.

The following pin is required to interface in synchronous mode:

USART_CK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission (no clock pulses on start bit and STOP bit, and a software
option to send a clock pulse on the last data bit). This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable.

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 233/266

Figure 84. STM8L USART block diagram

WAKE_UP
UNIT

RECEIVER
CONTROL

USART_SR

TRANSMIT

CONTROL

TXE TC RXNE IDLE OR NF FE

CONTROL

INTERRUPT

USART_CR1

R8 T8 M WAKE

Receive Data Register (RDR)

Receive Shift Register

Read

Transmit Data Register (TDR)

Transmit Shift Register

Write

USART_TX

USART_DR (DATA REGISTER)

BAUD RATEfMASTER

GENERATOR

SBKRWURENTENILIENRIENTCIENTIEN

USART_CR2

USARTD PCEN PS PIEN

PE

USART_CR4

- CLKEN CPOL CPHA LBCL

USART_CK CONTROLUSART_CK

USART_CR3

STOP BITS

USART_BRR

ADD

USART_RX

MCU bus

-

-

- - -

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

234/266 Doc ID 14400 Rev 5

20.3.1 USART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
USART_CR1 register (see Figure 85).

The USART_TX pin is in low state during the start bit. It is in high state during the STOP bit.

An Idle character is interpreted as an entire frame of “1”s (the number of “1” ‘s includes the
start bit, the number of data bits and the number of STOP bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 STOP bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 85. Word length programming

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
Bit STOP

Bit

Next
Start
Bit

Idle Frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

STOP
Bit

Next
Start
Bit

Idle frame
Start
Bit

9-bit word length (M bit is set), 1 STOP bit

8-bit word length (M bit is reset), 1 STOP bit

Possible
parity

bit

Possible
Parity

Bit

Break Frame Start
Bit

Extra
’1’

Data Frame

Break frame Start
Bit

Extra
’1’

Data Frame

Next data frame

Next data frame

Start
Bit

** LBCL bit controls last data clock pulse

CLOCK

CLOCK

** LBCL bit controls last data clock pulse

**

**

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 235/266

20.3.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the
T8 bit in the USART_CR1 register.

When the transmit enable bit (TEN) is set, the data in the transmit shift register is output on
the USART_TX pin and the corresponding clock pulses are output on the USART_CK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first on the USART_TX
pin. In this mode, the USART_DR register consists of a buffer (TDR) between the internal
bus and the transmit shift register (see Figure 84).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of STOP bits.

The following STOP bits are supported by USART.

Note: 1 The TEN bit should not be reset during transmission of data.Resetting the TEN bit during
the transmission will corrupt the data on the USART_TX pin as the baud rate counters will
get frozen.The current data being transmitted will be lost.

2 An idle frame will be sent after the TEN bit is enabled.

Configurable STOP bits during transmission

The number of STOP bits to be transmitted with every character can be programmed in
Control register 3, bits 5,4.

● 1 STOP bit: This is the default value of number of STOP bits.

● 2 STOP bits: This will be supported by normal mode USART.

An idle frame transmission will include the STOP bits.

A break transmission consists of 10 low bits followed by the configured number of STOP bits
(when m = 0) and 11 low bits followed by the configured number of STOP bits (when m = 1).
It is not possible to transmit long breaks (break of length greater than 10/11 low bits).

Figure 86. Configurable STOP bits

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

8-bit Word length (M bit is reset)
Possible

Parity
Bit

Data Frame
Next Data Frame

** LBCL bit controls last data clock pulse

CLOCK
**

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

2 Stop
Bits

Next
Start
Bit

Possible
Parity

Bit
Data Frame

Next Data Frame

a) 1 Stop Bit

b) 2 Stop Bits

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

236/266 Doc ID 14400 Rev 5

Procedure

1. Program the M bit in USART_CR1 to define the word length.

2. Program the number of STOP bits in USART_CR3.

3. Select the desired baud rate by programming the baud rate registers in the following
order:

a) USART_BRR2

b) USART_BRR1

4. Set the TEN bit in USART_CR2 to enable transmitter mode.

5. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

6. Once the last data is written to the USART_DR register, wait until TC is set to ‘1’, which
indicates that the last data transmission is complete. This last step is required, for
instance, to avoid last data transmission corruption when disabling the USART or
entering Halt mode.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

● The data has been moved from TDR to the shift register and the data transmission has
started.

● The TDR register is empty.

● The next data can be written in the USART_DR register without overwriting the
previous data.

This flag generates an interrupt if the TIEN bit is set.

When a transmission is taking place, a write instruction to the USART_DR register stores
the data in the TDR register. The data is copied in the shift register at the end of the current
transmission.

When no transmission is taking place, a write instruction to the USART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

If a frame transmission is complete (after the stop bit) and the TXE bit is set, the TC bit is
set. An interrupt is generated if the TCIEN is set in the USART_CR2 register. After writing
the last data into the USART_DR register, it is mandatory to wait until TC is set to ‘1’ before
entering Halt mode or disabling the USART (see Figure 87: TC/TXE behavior when
transmitting).

Clearing the TC bit is performed by the following software sequence:

1. A read to the USART_SR register

2. A write to the USART_DR register

Note: The TC bit can also be cleared by writing a ‘0’ to it. This clearing sequence is recommended
only for multibuffer communication.

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 237/266

Figure 87. TC/TXE behavior when transmitting

1. This example assumes that several other transmissions occurred after TE has been set. Otherwise an
IDLE preamble would be transmitted first when writing to USART_DR for the first time.

Note: The TC bit can also be cleared by writing a ‘0’ to it. This clear sequence is recommended
only for multibuffer communication.

Break character

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 85).

If the SBK bit is set to ‘1’ a break character is sent on the USART_TX line after completing
the current character transmission. This bit is reset by hardware when the break character is
completed (during the STOP bit of the break character).The USART inserts a logic 1 bit at
the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Note: The break character is sent without taking into account the number of STOP bits. If the
USART is programmed with 2 STOP bits, the TX line is pulled low until the end of the first
STOP bit only. Then 2 logic 1 bits are inserted before the next character.

Note: If the software resets the SBK bit before the start of break transmission, the break character
is not transmitted. For two consecutive breaks, the SBK bit should be set after the STOP bit
of the previous break.

Idle character

Setting the TEN bit drives the USART to send an idle frame before the first data frame.

20.3.3 Receiver

The USART can receive data words of either 8 or 9 bits. When the M bit is set, word length
is 9 bits and the MSB is stored in the R8 bit in the USART_CR1 register.

Start bit detection

In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0X 0X 0 X 0X 0. The start bit detection sequence shown in
Figure 88.

TX line

USART_DR

Frame 1

TXE flag

F2

TC flag

F3

Frame 2

Software waits until TXE = 1
and writes F2 into DR

Software waits until TXE = 1
and writes F3 into DR

TC is not set
because TXE = 0

Software waits until TC = 1

Frame 3

TC is set because
TXE = 1

Set by hardware and
cleared by software

Set by hardware and
cleared by software Set by hardware

Set

Idle preamble

by hardware

F1

Software
enables the

USART

TC is not set
because TXE = 0

Software waits until TXE = 1
and writes F1 into DR

ai17121b

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

238/266 Doc ID 14400 Rev 5

Figure 88. Start bit detection

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the
idle state (no flag is set), where it waits for a falling edge.

If only 2 out of the 3 bits are at 0 (sampling on the 3rd, 5th and 7th bits or sampling on the 8th,
9th and 10th bits), the start bit is validated but the NF noise flag bit is set.

The start bit is confirmed if the last 3 samples are at 0 (sampling on the 8th, 9th, and 10th
bits.

Character reception

During a USART reception, data shifts in least significant bit first through the USART_RX
pin. In this mode, the USART_DR register consists of a buffer (RDR) between the internal
bus and the received shift register (see Figure 2).

Procedure:

1. Program the M bit in USART_CR1 to define the word length.

2. Program the number of STOP bits in USART_CR3.

3. Select the desired baud rate by programming the baud rate registers in the following
order:

a) USART_BRR2

b) USART_BRR1

4. Set the REN bit USART_CR2. This enables the receiver which begins searching for a
start bit.

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 239/266

When a character is received

● The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR.

● An interrupt is generated if the RIEN bit is set.

● The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

● Clearing the RXNE bit is performed by a software read to the USART_DR register. The
RXNE flag can also be cleared by writing a zero to it. The RXNE bit must be cleared
before the end of the reception of the next character to avoid an overrun error.

Note: The REN bit should not be reset while receiving data. If the REN bit is disabled during
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the USART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a received data character
plus an interrupt if the ILIEN bit is set.

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

When an overrun error occurs:

● The OR bit is set.

● The RDR content will not be lost. The previous data is available when a read to
USART_DR is performed.

● The shift register will be overwritten. The second data received during overrun is lost.

● An interrupt is generated if the RIEN bit is set.

● The OR bit is reset by a read to the USART_SR register followed by a USART_DR
register read operation.

Noise error

Over-sampling techniques are used for data recovery by discriminating between valid
incoming data and noise.

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

240/266 Doc ID 14400 Rev 5

Figure 89. Data sampling for noise detection

Note: The sample clock frequency is 16x baud rate.

When noise is detected in a frame:

● The NF is set at the rising edge of the RXNE bit.

● The invalid data is transferred from the Shift register to the USART_DR register.

This bit rises at the same time as the RXNE bit which generates an interrupt. The NF bit is
reset by a USART_SR register read operation followed by a USART_DR register read
operation.

Framing error

A framing error is detected when:

The STOP bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

When the framing error is detected:

● The FE bit is set by hardware

● The invalid data is transferred from the Shift register to the USART_DR register.

● No interrupt is generated in case of single byte communication. However, this bit rises
at the same time as the RXNE bit which itself generates an interrupt.

The FE bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

RX LINE

Sample
 clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sampled values

One bit time

6/16

7/16 7/16

Table 40. Noise detection from sampled data

Sampled value NF status Received bit value Data validity

000 0 0 Valid

001 1 0 Not Valid

010 1 0 Not Valid

011 1 1 Not Valid

100 1 0 Not Valid

101 1 1 Not Valid

110 1 1 Not Valid

111 0 1 Valid

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 241/266

Configurable STOP bits during reception

The number of STOP bits to be received can be configured through the control bits of
Control Register 3 - it can be either 1 or 2.

1. 1 STOP bit: Sampling for 1 STOP bit is done on the 8th, 9th and 10th samples.

2. 2 STOP bits: Sampling for 2 STOP bits is done on the 8th, 9th and 10th samples of the
first STOP bit.If a framing error is detected during the first STOP bit the framing error
flag will be set. The second STOP bit is not checked for framing error. The RXNE flag
will be set at the end of the first STOP bit.

20.3.4 High precision baud rate generator

The receiver and transmitter (Rx and Tx) are both set to the same baud rate programmed by
a 16-bit divider USART_DIV according to the following formula:

The USART_DIV baud rate divider is an unsigned integer, coded in the BRR1 and BRR2
registers as shown in Figure 90.

Refer to Table 41 for typical baud rate programming examples.

Figure 90. How to code USART_DIV in the BRR registers

Note: The Baud Counters will be updated with the new value of the Baud Registers after a write to
BRR1. Hence the Baud Register value should not be changed during a transaction. The
BRR2 should be programmed before BRR1.

Note: USART_DIV must be greater than or equal to 16d.

Tx/ Rx baud rate =
fMASTER

USART_DIV

7 0 7 0

USART_BRR1 USART_BRR2

4 3

Example: To obtain 9600 baud with fMASTER = 16 MHz.

USART_DIV[15:12]USART_DIV[11:4] USART_DIV[3:0]

USART_DIV = 1667d = 0683h See the following table.

register = 03h

USART_DIV = 16 000 000/9600

register = 68h

68h 3h0h

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

242/266 Doc ID 14400 Rev 5

Note: The lower the fMASTER frequency, the lower will be the accuracy for a particular baud
rate.The upper limit of the achievable baud rate can be fixed with this data.

20.3.5 USART receiver’s tolerance to clock deviation

The USART’s asynchronous receiver works correctly only if the total clock system deviation
is smaller than the USART receiver’s tolerance. The causes which contribute to the total
deviation are:

● DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)

● DQUANT: Error due to the baud rate quantization of the receiver

● DREC: Deviation of the receiver’s local oscillator

● DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-to-
low transition timing)

DTRA + DQUANT + DREC + DTCL < USART receiver’s tolerance

The USART receiver’s tolerance to properly receive data is equal to the maximum tolerated
deviation and depends on the following choices:

● 10- or 11-bit character length defined by the M bit in the USART_CR1 register

● Use of fractional baud rate or not

Table 42. USART receiver ‘s tolerance when USART_DIV is 0

Table 41. Baud rate programming and error calculation

Baud
rate

fMASTER= 10 MHz fMASTER = 16 MHz

In bps
Actual
(bps)

% Error
(%)(1)

USART_DIV
(h)

BRR1
(h)

BRR2
(h)

Actual
%

Error(1)
USART_

DIV
BRR1 BRR2

2400 2399.81 -0.008 1047 4 17 2399.88 -0.005 1A0B A0 1B

9600 9596.93 -0.03 412 41 2 9598.08 -0.02 683 68 3

19200 19193.86 -0.03 209 20 9 19207.68 0.04 341 34 1

57600 57471.26 -0.22 AE A E 57553.96 -0.08 116 11 6

115200 114942.53 -0.22 57 5 7 115107.91 -0.08 8B 8 B

230400 232558.14 0.94 2B 2 B 231884.06 0.64 45 4 5

460800 454545.45 -1.36 16 1 6 457142.86 -0.79 23 2 3

921600 NA NA NA NA NA 941176.47 2.12 11 1 1

1. Error % = (Calculated - Desired) Baud Rate / Desired Baud Rate

M bit NF is an error NF is don’t care

0 3.75% 4.375%

1 3.41% 3.97%

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 243/266

Table 43. USART receiver’s tolerance when USART_DIV is different from 0

Note: The figures specified in Table 42 and Table 43 may slightly differ in the special case when
the received frames contain some Idle frames of exactly 10-bit times when M=0 (11-bit times
when M=1).

20.3.6 Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCEN bit in the USART_CR1 register. Depending on the frame
length defined by the M bit, the possible USART frame formats are as listed in Table 44.

Legends: SB: Start Bit, STB: STOP bit, PB: Parity bit

Note: In case of wakeup by an address mark, the MSB bit of the data is taken into account and not
the parity bit

Even parity: the parity bit is calculated to obtain an even number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in
USART_CR1 = 0).

Odd parity: the parity bit is calculated to obtain an odd number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Example: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in
USART_CR1 = 1).

Transmission: If the PCEN bit is set in USART_CR1 then the MSB bit of the data written in
the data register is not transmitted but is changed by the parity bit to give an even number of
‘1’s if even parity is selected (PS=0) or an odd number of ‘1’s if odd parity is selected
(PS=1).

Reception: If the parity check fails, the PE flag is set in the USART_SR register and an
interrupt is generated if the PIEN bit is set in the USART_CR1 register.

20.3.7 Multi-processor communication

It is possible to perform multiprocessor communication with the USART (several USARTs
connected in a network). For example, one of the USARTs can be the master, its TX output

M bit NF is an error NF is don’t care

0 3.33% 3.88%

1 3.03% 3.53%

Table 44. Frame formats

M bit PCEN bit USART frame

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

244/266 Doc ID 14400 Rev 5

is connected to the RX input of the other USART. The others are slaves, their respective TX
outputs are logically ANDed together and connected to the RX input of the master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In mute mode:

● None of the reception status bits can be set.

● All the receive interrupts are inhibited.

● The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically
by hardware or written by the software under certain conditions.

The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USART_CR1 register:

● Idle Line detection if the WAKE bit is reset,

● Address Mark detection if the WAKE bit is set.

Idle line detection (WAKE=0)

The USART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using idle line detection is given in Figure 91.

Figure 91. Mute mode using Idle line detection

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1’ else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address which is programmed
in the ADD bits in the USART_CR4 register.

The USART enters mute mode when an address character is received which does not
match its programmed address. The RXNE flag is not set for this address byte and no
interrupt request is issued as the USART would have entered mute mode.

It exits from mute mode when an address character is received which matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been cleared.

The RWU bit can be written to 0 or 1 when the receiver buffer contains no data (RXNE=0 in
the USART_SR register). Otherwise the write attempt is ignored.

RWU written to 1

Data 1 IDLERX Data 2 Data 3 Data 4 Data 6Data 5

RWU Mute Mode Normal Mode

Idle frame detected

RXNE RXNE

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 245/266

An example of mute mode behavior using address mark detection is given in Figure 92.

Figure 92. Mute mode using address mark detection

Note: If parity control is enabled, the parity bit remains in the MSB and the address bit is put in the
"MSB - 1" bit.

For example, with 7-bit data, address mode and parity control:

SB I 7-bit data I ADD I PB I STB

where:

SB = Start Bit
STB = STOP Bit
ADD = Address bit
PB = Parity Bit

20.3.8 USART synchronous communication

The USART transmitter allows the user to control bidirectional synchronous serial
communications in master mode.

Note: This feature is only available for devices with USART_CK pin. Check the device pinout for
availability.

The USART_CK pin is the output of the USART transmitter clock. No clock pulses are sent
to the USART_CK pin during start bit and STOP bit. Depending on the state of the LBCL bit
in the USART_CR3 register clock pulses will or will not be generated during the last valid
data bit (address mark). The CPOL bit in the USART_CR3 register allows the user to select
the clock polarity, and the CPHA bit in the USART_CR3 register allows the user to select the
phase of the external clock (see Figure 93, Figure 94 & Figure 95). During idle and break
frames, the external CK clock is not activated.

In synchronous mode, the USART receiver works differently compared to asynchronous
mode. If REN=1, the data is sampled on SCLK (rising or falling edge, depending on CPOL
and CPHA), without any oversampling. A setup and a hold time (even if the hold time is not
relevant due to the SPI protocol) must be respected (which depends on the baud rate: 1/16
bit time for an integer baud rate).

During the idle state, preamble phase and break transmission, the external USART_CK
clock is not activated. In synchronous mode, the USART transmitter works exactly like in
asynchronous mode. But as USART_CK is synchronized with USART_TX (depending on
CPOL and CPHA), the data on TX is synchronous. In this mode, the USART receiver works
slightly differently compared to the asynchronous mode: if REN=1, the data is still sampled
using the internal oversampling clock and the baud rate clock is output on the USART_CK

RWU written to 1

IDLERX Addr=0

RWU Mute Mode Normal Mode

Matching address

RXNE RXNE

(RXNE was cleared)

Data 2 Data 3 Data 4 Data 5Data 1 IDLE Addr=1 Addr=2

Mute Mode

In this example, the current address of the receiver is 1
(programmed in the USART_CR4 register)

Non-matching address Non-matching address

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

246/266 Doc ID 14400 Rev 5

pin (rising or falling edge is aligned with the data sampling event depending on CPOL and
CPHA). But contrary to asynchronous mode, the data is evaluated using one sample and
not the majority of 3 samples, meaning that the NF bit will never be set.

Setup and hold times must be respected (depending on the baud rate: 1/16 bit time for an
integer baud rate).

Note: 1 The USART_CK pin works in conjunction with the TX pin. When the USART transmitter is
disabled (TEN and REN= 0), the USART_CK and USART_TX pins go into high impedance
state.

2 The LBCL, CPOL and CPHA bits in USART_CR3 have to be selected when both the
transmitter and the receiver are disabled (TEN=REN=0) to ensure that the clock pulses
function correctly. These bits should not be changed while the transmitter or the receiver is
enabled.

3 It is recommended to set TEN and REN are set in the same instruction in order to minimize
the setup and the hold time of the receiver.

4 The USART supports master mode only: it cannot receive or send data related to an input
clock (SCLK is always an output).

5 The data given in this section apply only when the USART_DIV[3:0] bits in the
USART_BRR2 register are kept at 0. Else the setup and hold times are not 1/16 of a bit time
but 4/16 of a bit time.

This option allows to serially control peripherals which consist of shift registers, without
losing any functions of the asynchronous communication which can still talk to other
asynchronous transmitters and receivers.

Figure 93. USART example of synchronous transmission

Data outRX

TX

SCLK

USART

Data in

Synchronous device
(for example slave SPI)

Clock

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 247/266

Figure 94. USART data clock timing diagram (M=0)

Figure 95. USART data clock timing diagram (M=1)

Figure 96. RX data setup/hold time

M=0 (8 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

Idle or next
transmission

Idle or nextM=1 (9 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

8

transmission

valid DATA bit

tSETUP tHOLD

SCLK (capture strobe on SCLK
rising edge in this example)

Data on RX
(from slave)

tSETUP = tHOLD 1/16 bit time = 1/16*fSCLK

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

248/266 Doc ID 14400 Rev 5

20.4 USART low power modes

20.5 USART interrupts

Note: 1 The USART interrupt events are connected to two interrupt vectors (see Figure 97).

a) Transmission Complete or Transmit Data Register empty interrupt.

b) Idle line detection, Overrun error, Receive data register full, Parity error interrupt,
and Noise flag.

2 These events generate an interrupt if the corresponding enable control bit is set and the
interrupt mask in the CCR register is reset (RIM instruction).

Figure 97. USART interrupt mapping diagram

Table 45. USART interface behavior in low power modes

Mode Description

Wait
No effect on USART.

USART interrupts cause the device to exit from Wait mode.

Halt
USART registers are frozen.

In Halt mode, the USART stops transmitting/receiving until Halt mode is exited.

Table 46. USART interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

Transmit data register empty TXE TIEN Yes No

Transmission complete TC TCIEN Yes No

Received data ready to be read RXNE
RIEN

Yes No

Overrun error detected OR Yes No

Idle line detected IDLE ILIEN Yes No

Parity error PE PIEN Yes No

TC
TCIEN

TXE

TIEN

IDLE
ILIEN

RIEN
OR

RIEN
RXNE

PE
PIEN

Transmitter Interrupt

Receiver Interrupt

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 249/266

20.6 USART registers

20.6.1 Status register (USART_SR)

Address offset: 0x00

Reset value: 0xC0

7 6 5 4 3 2 1 0

TXE TC RXNE IDLE OR NF FE PE

r r r r r r r r

Bit 7 TXE: Transmit data register empty.
This bit is set by hardware when the content of the TDR register has been transferred into the shift
register. An interrupt is generated if the TIEN bit =1 in the USART_CR2 register. It is cleared by a write
to the USART_DR register.

0: Data is not transferred to the shift register
1: Data is transferred to the shift register

Bit 6 TC: Transmission complete.

TC bit is set by hardware if the transmission of a frame containing data is complete and TXE bit is set.
An interrupt is generated if TCIEN=1 in the USART_CR2 register.

TC bit is cleared either by a software sequence (a read to the USART_SR register followed by a write
to the USART_DR register), or by programming the bit to ‘0’. This clear sequence is recommended
only for multibuffer communications.

0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty.
This bit is set by hardware when the content of the RDR shift register has been transferred to the
USART_DR register. An interrupt is generated if RIEN=1 in the USART_CR2 register. It is cleared by a
read to the USART_DR register.

0: Data is not received
1: Received data is ready to be read.

Bit 4 IDLE: IDLE line detected. (1)

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the ILIEN=1 in the
USART_CR2 register. It is cleared by a software sequence (a read to the USART_SR register followed
by a read to the USART_DR register).

0: No Idle Line is detected
1: Idle Line is detected

Bit 3 OR: Overrun error.(2)

This bit is set by hardware when the word currently being received in the shift register is ready to be
transferred into the RDR register while RXNE=1. An interrupt is generated if RIEN=1 in the
USART_CR2 register. It is cleared by a software sequence (a read to the USART_SR register followed
by a read to the USART_DR register).

0: No Overrun error
1: Overrun error is detected

Bit 2 NF: Noise flag. (3)

This bit is set by hardware when noise is detected on a received frame. It is cleared by a software
sequence (a read to the USART_SR register followed by a read to the USART_DR register).

0: No noise is detected
1: Noise is detected

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

250/266 Doc ID 14400 Rev 5

Bit 1 FE: Framing error. (4)

This bit is set by hardware when a de-synchronization, excessive noise or a break character is
detected. It is cleared by a software sequence (a read to the USART_SR register followed by a read to
the USART_DR register).

0: No framing error is detected
1: Framing error or break character is detected

Bit 0 PE: Parity error.

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software
sequence (a read to the status register followed by a read to the USART_DR data register). You have
to wait for the RXNE flag to be set before clearing it. An interrupt is generated if PIEN=1 in the
USART_CR1 register.

0: No parity error
1: Parity error

1. The IDLE bit is not set again until the RXNE bit has been set itself (i.e. a new idle line occurs)

2. When this bit is set, the RDR register content is not lost but, the shift register is overwritten.

3. This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt.

4. This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. If
the word currently being transferred causes both a frame error and an overrun error, it is transferred and only the OR bit is
set.

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 251/266

20.6.2 Data register (USART_DR)

Address offset: 0x01

Reset value: Undefined

20.6.3 Baud rate register 1 (USART_BRR1)

The baud rate registers are common to both the transmitter and the receiver. The baud rate
is programmed using two registers BRR1 and BRR2. Writing of BRR2 (if required) should
precede BRR1, since a write to BRR1 will update the baud counters.

See Figure 90: How to code USART_DIV in the BRR registers on page 241 and Table 41:
Baud rate programming and error calculation on page 242

Note: The baud counters stop counting if the TEN or REN bits are disabled respectively.

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

DR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DR[7:0]: Data value.

Contains the received or transmitted data character, depending on whether it is read from or written to.

The Data register performs a double function (read and write) since it is composed of two registers,
one for transmission (TDR) and one for reception (RDR)

The TDR register provides the parallel interface between the internal bus and the output shift register.
The RDR register provides the parallel interface between the input shift register and the internal bus.

7 6 5 4 3 2 1 0

USART_DIV[11:4]

rw rw rw rw - rw rw rw

Bits 7:0 USART_DIV[11:4]: USART_DIV bits (1)

These 8 bits define the 2nd and 3rd nibbles of the 16-bit USART divider (USART_DIV).

1. BRR1 = 0x00 means USART clock is disabled.

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

252/266 Doc ID 14400 Rev 5

20.6.4 Baud rate register 2 (USART_BRR2)

Address offset: 0x03

Reset value: 0x00

20.6.5 Control register 1 (USART_CR1)

Address offset: 0x04

Reset value: 0x00

7 6 5 4 3 2 1 0

USART_DIV[15:12] USART_DIV[3:0]

rw rw rw rw rw rw rw rw

Bits 7:4 USART_DIV[15:12]: MSB of USART_DIV.

These 4 bits define the MSB of the USART Divider (USART_DIV)

Bits 3:0 USART_DIV[3:0]: LSB of USART_DIV.

These 4 bits define the LSB of the USART Divider (USART_DIV)

7 6 5 4 3 2 1 0

R8 T8 USARTD M WAKE PCEN PS PIEN

rw rw rw rw rw rw rw rw

Bit 7 R8: Receive data bit 8.
This bit is used to store the 9th bit of the received word when M=1

Bit 6 T8: Transmit data bit 8.
This bit is used to store the 9th bit of the transmitted word when M=1

Bit 5 USARTD: USART disable (for low power consumption).
When this bit is set the USART prescaler and outputs are stopped at the end of the current byte
transfer in order to reduce power consumption. This bit is set and cleared by software.

0: USART enabled
1: USARTprescaler and outputs disabled

Bit 4 M: word length.
This bit determines the word length. It is set or cleared by software.

0: 1 Start bit, 8 Data bits, ‘n’ STOP bit (n depending on STOP[1:0] bits in the USART_CR3 register)
1: 1 Start bit, 9 Data bits, 1 STOP bit

Note: The M bit must not be modified during a data transfer (both transmission and reception)

Bit 3 WAKE: Wakeup method.

This bit determines the USART wakeup method, it is set or cleared by software.
0: Idle line
1: Address mark

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 253/266

20.6.6 Control register 2 (USART_CR2)

Address offset: 0x05

Reset value: 0x00

Bit 2 PCEN: Parity control enable.
This bit selects the hardware parity control (generation and detection). When the parity control is
enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is
checked on the received data. This bit is set and cleared by software. Once it is set, PCEN is active
after the current byte (in reception and in transmission).

0: Parity control disabled
1: Parity control enabled

Bit 1 PS: Parity selection.

This bit selects the odd or even parity when the parity generation/detection is enabled (PCEN bit set).
It is set and cleared by software. The parity will be selected after the current byte.

0: Even parity
1: Odd parity

Bit 0 PIEN: Parity interrupt enable.

This bit is set and cleared by software.

0: Parity interrupt disabled
1: Parity interrupt is generated whenever PE=1 in the USART_SR register

7 6 5 4 3 2 1 0

TIEN TCIEN RIEN ILIEN TEN REN RWU SBK

rw rw rw rw rw rw rw rw

Bit 7 TIEN: Transmitter interrupt enable.

This bit is set and cleared by software.

0: Interrupt is inhibited
1: An USART interrupt is generated whenever TXE=1 in the USART_SR register

Bit 6 TCIEN: Transmission complete interrupt enable.

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TC=1 in the USART_SR register

Bit 5 RIEN: Receiver interrupt enable.
This bit is set and cleared by software.

0: Interrupt is inhibited
1: An USART interrupt is generated whenever OR=1 or RXNE=1 in the USART_SR register

Bit 4 ILIEN: IDLE Line interrupt enable.

This bit is set and cleared by software.

0: Interrupt is inhibited
1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register

Bit 3 TEN: Transmitter enable. (1) (2)

This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

254/266 Doc ID 14400 Rev 5

Bit 2 REN: Receiver enable.
This bit enables the receiver. It is set and cleared by software.

0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup. (3) (4)

This bit determines if the USART is in mute mode or not. It is set and cleared by software and can be
cleared by hardware when a wakeup sequence is recognized.

0: Receiver in active mode
1: Receiver in mute mode

Bit 0 SBK: Send break.

This bit set is used to send break characters. It can be set and cleared by software. It should be set by
software, and will be reset by hardware during the STOP bit of break.

0: No break character is transmitted
1: Break character will be transmitted

1. During transmission, a “0” pulse on the TEN bit (“0” followed by “1”) sends a preamble (idle line) after the current word.

2. When TEN is set there is a 1 bit-time delay before the transmission starts.

3. Before selecting Mute mode (by setting the RWU bit) the USART must first receive a data byte, otherwise it cannot function
in Mute mode with wakeup by Idle line detection.

4. In address mark detection wakeup configuration (WAKE bit=1) the RWU bit cannot be modified by software while the
RXNE bit is set.

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 255/266

20.6.7 Control register 3 (USART_CR3)

Address offset: 0x06

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved STOP[1:0] CLKEN CPOL CPHA LBCL

rw rw rw rw rw rw

Bit 7:6 Reserved, must be kept cleared.

Bits 5:4 STOP: STOP bits.
These bits are used for programming the STOP bits.

00: 1 STOP bit
01: Reserved
10: 2 STOP bits
11: Reserved

Bit 3 CLKEN: Clock enable.
This bit allows the user to enable the SCLK pin.

0: SLK pin disabled
1: SLK pin enabled

Bit 2 CPOL: Clock polarity. (1)

This bit allows the user to select the polarity of the clock output on the SCLK pin. It works in
conjunction with the CPHA bit to produce the desired clock/data relationship

0: SLKto 0 when idle
1: SLKto 1 when idle.

Bit 1 CPHA: Clock phase (1)

This bit allows the user to select the phase of the clock output on the SCLK pin. It works in conjunction
with the CPOL bit to produce the desired clock/data relationship

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Bit 0 LBCL: Last bit clock pulse.(1)(2)

This bit allows the user to select whether the clock pulse associated with the last data bit transmitted
(MSB) has to be output on the SCLK pin.

0: The clock pulse of the last data bit is not output to the SCLK pin.
1: The clock pulse of the last data bit is output to the SCLK pin.

1. These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

2. The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected by the M bit in the USART_CR1
register.

Universal synchronous/asynchronous receiver transmitter (USART) RM0013

256/266 Doc ID 14400 Rev 5

20.6.8 Control register 4 (USART_CR4)

Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved ADD[3:0]

rw rw rw rw

Bit 7:4 Reserved, must be kept cleared.

Bits 3:0 ADD[3:0]: Address of the USART node.
This bit-field gives the address of the USART node.

This is used in multiprocessor communication during mute mode, for wakeup with address mark
detection.

RM0013 Universal synchronous/asynchronous receiver transmitter (USART)

Doc ID 14400 Rev 5 257/266

20.6.9 USART register map and reset values

Table 47. USART register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00
USART_SR

Reset value

TXE

1

TC

1

RXNE
0

IDLE

0

OR

0

NF

0

FE

0

PE

0

0x01
USART_DR

Reset value

DR7

x

DR6

x

DR5

x

DR4

x

DR3

x

DR2

x

DR1

x

DR0

x

0x02
USART_BRR1

Reset value

USART_DIV[11:4]

00000000

0x03
USART_BRR2

Reset value

USART_DIV[15:12]

0000

USART_DIV[3:0]

0000

0x04
USART_CR1

Reset value

R8

0

T8

0

USARTD

0

M

0

WAKE

0

PCEN

0

PS

0

PIEN

0

0x05
USART_CR2

Reset value

TIEN

0

TCIEN

0

RIEN

0

ILIEN

0

TEN

0

REN

0

RWU

0

SBK

0

0x06
USART_CR3

Reset value

-

0

-

0

STOP

00

CKEN

0

CPOL

0

CPHA

0

LBCL

0

0x07
USART_CR4

Reset value

-

0

-

0

-

0

-

0

ADD[3:0]

0000

Comparators (COMP) RM0013

258/266 Doc ID 14400 Rev 5

21 Comparators (COMP)

21.1 Introduction
The STM8L features two zero-crossing comparators. They share the same current bias and
the same voltage reference. The voltage reference can be internal (comparison with ground)
or external (comparison to a reference pin voltage).

Each comparator is connected to 4 channels, which can be used to generate interrupt, timer
input capture or timer break. Their polarity can be inverted.

21.2 Main features
● 2 zero-crossing comparators

● Switches which can either

– connect any I/O to the comparator input

– or connect several I/Os to each other and to the comparator input.

● Interrupt generation: one single interrupt is generated for both comparators. It is
enabled through flags ITEN1 and ITEN2 of COMP_CSR register (see Section 21.6.2:
Comparator control status register (COMP_CSR)).

● Input captures or break generation on TIM2

● Input capture generation on TIM3

● A zero-crossing can generate a rising edge or a falling edge on comparator outputs
depending on a bit of polarity

The block diagram is shown on Figure 1.

RM0013 Comparators (COMP)

Doc ID 14400 Rev 5 259/266

Figure 98. Comparator block diagram

COMP1_EN

COMP2_EN

1

2

+

+

-

-

1

0

POL

TIM2 input capture 1
TIM2 break

IC1/BK
CNF
TIM1

CNF
TIM0

POL
COMP

REF
COMP2
_EN

COMP1
_EN

BIAS

ITEN2 CEF2 ITEN1 CEF1 - - COMP2
_OUT

COMP1
_OUT

COMP1
_CH2

COMP1
_CH1

COMP1
_CH3

COMP1
_CH4

COMP2
_CH1

COMP2
_CH2

COMP2
_CH3

COMP2
_CH4

1

0

POL

BIAS_EN

BIAS_EN

IT

COMP_CCS

COMP_CR

COMP_CSR

CNF_TIM[1:0]
IC1/BK

IO

IO

IO

IO

IO

IO

IO

IO

IO

TIM2 input capture 2
TIM3 input capture 1

_EN__ _

Comparators (COMP) RM0013

260/266 Doc ID 14400 Rev 5

21.3 Functional description
In order to use the comparators, the application must perform the following steps:

1. Enable the bias of both comparators using the BIAS_EN bit in the COMP_CR register.
It must be enabled several microseconds before enabling comparator 1 or 2 through
the COMP1_EN or COMP2_EN bits (comparator characteristics).

2. Configure the timers to use the comparators with timer 2 input capture/break and/or
timer 3 input capture.

3. If required, perform the following procedures:

– Select the comparator polarity using the POL bit in the COMP_CR.

– Select the external reference using the COMP_REF bit in the COMP_CR register
(by default, the reference is internal).

– Configure the interconnection with timer 2 and timer 3 using CNF_TIM[1:0] and
IC1/BK in the COMP_CR register.

– Enable the comparator interrupt using ITEN1 or ITEN2 in the COMP_CSR
register.

4. Enable one channel for each comparator using the COMP_CSS register.

5. Enable comparator 1 and/or comparator 2 using COMP1_EN and COMP2_EN bits in
the COMP_CR register.

Note: Several switches can be closed at the same time, so as to enable, for instance, charge
transfers or resistor bridges.

21.4 Low power modes

21.5 Interrupts

Note: The 2 comparator event interrupts are connected to the same interrupt vector (see the
interrupt mapping table in the datasheet). These events generate an interrupt if the
corresponding ITEN bit is set and the interrupt mask in the CC register is reset (RIM
instruction).

Table 48. Comparator behavior in low power modes

Mode Description

WAIT
No effect on comparator.
Comparator interrupts cause the device to exit from Wait mode.

HALT Comparator registers are frozen.

Table 49. Comparator interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

Comparator 1 event flag CEF1 ITEN1 Yes No

Comparator 2 event flag CEF2 ITEN2 Yes No

RM0013 Comparators (COMP)

Doc ID 14400 Rev 5 261/266

21.6 COMP registers

21.6.1 Comparator control register (COMP_CR)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

IC1/BK CNF_TIM1 CNF_ TIM0 POL COMPREF COMP2_EN COMP1_EN BIAS_ EN

rw rw rw rw rw rw rw rw

Bit 7 IC1/BK: Input capture 1/ break selection.
When CNF_TIM1 or CNF_TIM0 is set, if the IC1/BK bit is set, the first comparator
output is connected to Timer 2 break. Otherwise it is connected to Timer 2 input
capture 1.

0: first comparator output connected to timer 2 input capture 1.
1: first comparator output connected to timer 2 break.

Bits 6:5 CNF_TIM[1:0]: Comparator 1/2 output connected to Timer 2 and 3 input capture or
break

These bits are used to connect comparator outputs to Timer 2 input capture 1, Timer 2
input capture 2, Timer 2 break or Timer 3 input capture 1.

00: No connection.
01: Comparator 1 sent to timer 2 input capture 1/ break.
10: Comparator 1 sent to timer 2 input capture 1/ break and comparator 2 sent to
Timer 2 input capture 2.
11: Comparator 1 sent to timer 2 input capture 1/ break and comparator 2 sent to
Timer 3 Input capture 1.

Bit 4 POL: Comparator polarity.
This bit configures the comparator polarity. It is common to comparator 1 and 2.

0: Event detected when output comparator is 1.
1: Event detected when output comparator is 0.

Bit 3 COMP_REF: Comparator reference.
This bit selects internal or external reference of both comparators. If the reference is
internal, the switch of the reference I/O is open.

0: the comparator reference is internal.
1: the comparator reference is external.

Bit 2 COMP2_EN: Second comparator enable.

0: comparator 2 disabled.
1: comparator 2 enabled.

Bit 1 COMP1_EN: First comparator enable.

0: comparator 1 disabled.
1: comparator 1 enabled.

Bit 0 BIAS_EN: Bias enable.
This bit enables the bias used by both comparators.

0: bias disabled.
1: bias enabled.

Note: This bit must be enabled several microseconds before setting
COMP1_EN or COMP2_EN bits (comparator characteristics).

Comparators (COMP) RM0013

262/266 Doc ID 14400 Rev 5

21.6.2 Comparator control status register (COMP_CSR)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

ITEN2 CEF2 ITEN1 CEF1 Reserved Reserved COMP2_OUT COMP1_OUT

rw rc_w1 rw rc_w1 - - r r

Bit 7 ITEN2: Second comparator interrupt enable.
0: Interrupt is inhibited.
1: A timer interrupt is generated whenever the CEF2 bit is set.

Note: It is forbidden to set ITEN2 (interrupt enabled) and clear CEF2 simultaneously.

Bit 6 CEF2: Second comparator event flag.
When a positive edge on the second comparator output occurs, this bit is set. It is cleared writing 1.

0: No event detected.
1: Event detected

Note: It is forbidden to clear CEF2 and set ITEN2 (interrupt enabled) simultaneously.

Bit 5 ITEN1: First comparator interrupt enable.
0: Interrupt is inhibited.
1: A timer interrupt is generated whenever the CEF1 is set.

Note: It is forbidden to set ITEN1 (interrupt enabled) and clear CEF1 simultaneously.

Bit 4 CEF1: First comparator event flag.
When a positive edge on first comparator output occurs, this bit is set. It is cleared writing 1.

0: No event detected.
1: Event detected.

Note: It is forbidden to clear CEF1 and set ITEN1 (interrupt enabled) simultaneously.

Bits 3:2 Reserved, forced by hardware to 0.

Bit 1 COMP2_OUT: Second comparator output.
This bit is the exact copy of second comparator output.

0: comparator 2 output is 0.
1: comparator 2 output is 1.

Bit 0 COMP1_OUT: First comparator output.
This bit is the image copy of first comparator output.

0: comparator 2 output is 0.
1: comparator 2 output is 1.

RM0013 Comparators (COMP)

Doc ID 14400 Rev 5 263/266

21.6.3 Comparator channel selection (COMP_CCS)

Address offset: 0x02

Reset value: 0x00

 .

21.6.4 COMP register map and reset values

7 6 5 4 3 2 1 0

COMP2_CH4 COMP2_CH3 COMP2_CH2 COMP2_CH1 COMP1_CH4 COMP1_CH3 COMP1_CH2 COMP1_CH1

rw rw rw rw rw rw rw rw

Bits 7:0 COMPx_CHn: Comparator switch enable.

When COMPx_CHn is set, the switch n (n:1->4) of the comparator x (x: 1 or 2) is enabled
0: Switch open.
1: Switch closed.

Table 50. Comparator register map

Address
offset

Register
Name

7 6 5 4 3 2 1 0

0x00
COMP_CR

Reset value

IC1/BK

0

CNF_TIM1

0

CNF_TIM0

0

POL

0

COMPREF

0

COMP1_EN

0

COMP2_EN

0

BIAS_EN

0

0x01
COMP_CSR

Reset value

ITEN2

0

CEF2

0

ITEN2

0

CEF1

0

-

0

-

0

COMP2_OU

T

0

COMP2_OU

T

0

0x02
COMP_CCS

Reset value

COMP2_CH

4

0

COMP2_CH

3

0

COMP2_CH

2

0

COMP2_CH

1

0

COMP1_CH

4

0

COMP1_CH

3

0

COMP1_CH

2

0

COMP1_CH

1

0

Revision history RM0013

264/266 Doc ID 14400 Rev 5

22 Revision history

Table 51. Document revision history

Date Revision Changes

09-Apr-2009 1 Initial release.

19-Jun-2009 2

Updated comparator IRQ18 in Table 30: Interrupt mapping on
page 126.

Updated pin connected to the SWIM in Figure 3: SWIM pin
connection.

Added warning in Section 10.3: Port configuration and usage.
Section 20: Universal synchronous/asynchronous receiver
transmitter (USART): 7th step added in Character transmission
prodedure; updated Single byte communication and Figure 87:
TC/TXE behavior when transmitting added; updated TC bit
description in Section 20.6.1: Status register (USART_SR); added
Start bit detection and Section 20.3.5: USART receiver’s tolerance to
clock deviation in Section 20.3.3: Receiver .
Updated comparator 2 negative input in Figure 98: Comparator block
diagram.

Rename Infra-red (IR) interface IRTIM in Section 15.

10-Sep-2009 3

Modified Figure 39: Clock/trigger controller block diagram on
page 146, Figure 49: Timer chaining system implementation
example on page 153 and Figure 50: Trigger/master mode selection
blocks on page 153
Modified Section 13.1: Introduction on page 94, Section : Timeout
period on page 95, Figure 16: Independent watchdog block diagram
on page 94, Table 23: Min/Max IWDG timeout (LSI clock frequency =
38 kHz) on page 95 and Section : Using the IWDG in Halt/Active-halt
mode on page 95
38 kHz LSI RC instead of 37 kHz LSI RC
Modified Section 17.7.3: Slave mode control register (TIMx_SMCR)
on page 179
Modified Section 18.5.3: Slave mode control register (TIM4_SMCR)
on page 202
Section 19.3.5: Data transmission and reception procedures: timing
diagrams revised and description of receive-only mode expanded.
Added Section 19.3.7: Disabling the SPI

Modified Section 21.2: Main features on page 258, Figure 98:
Comparator block diagram on page 259 and Section 21.3:
Functional description on page 260
Modified Section 21.6.1: Comparator control register (COMP_CR)
on page 261 (bits 1 and 2)
Modified COMPx_CHn bit description in Section 21.6.3: Comparator
channel selection (COMP_CCS) on page 263

RM0013 Revision history

Doc ID 14400 Rev 5 265/266

25-Jun-2010 4

Added paragraph to Section 5.6: External interrupts on page 46

Added BEEP clock to Section 8.1.1: Peripheral clock gating (PCG)
on page 63 and Section 8.2: LSI clock on page 64

Added reference to BEEP in Section Table 15.: Low power mode
management on page 70

Updated AWU Table 20: Time base calculation table on page 86

Added note in Section 19.3.2: Configuring the SPI in slave mode on
page 212

Updated I2C Bus error (BERR) on page 112
Updated I2C_CCR values for SCL frequency table (fMASTER = 10
MHz or 16 MHz) on page 127
Updated SPI Figure 77: Data clock timing diagram on page 211

Updated MODF clearing sequence in SPI Error flags on page 222

Updated USART Baud rate programming and error calculation on
page 242

Updated Figure 98: Comparator block diagram on page 259

22-Jul-2010 5

Modified Section 7: Reset (RST) and voltage detection on page 58
Added Section 7.1: “Reset state” and “under reset” definitions on
page 58

Modified Section 10.4: Reset configuration on page 79
Modified reset value in Section 10.9.2: Port x pin input register
(Px_IDR) on page 81, in Section 10.9.4: Port x control register 1
(Px_CR1) on page 82 and in Table 19: GPIO register map on
page 83
Modified Step 5 in Section 11.3.1: AWU operation on page 85

Table 51. Document revision history (continued)

Date Revision Changes

RM0013

266/266 Doc ID 14400 Rev 5

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Memory and register map
	1.1 Register description abbreviations

	2 Central processing unit (CPU)
	2.1 Introduction
	2.2 CPU registers
	2.2.1 Description of CPU registers
	Figure 1. Programming model
	Figure 2. Stacking order
	Table 1. Interrupt levels

	2.2.2 STM8 CPU register map
	Table 2. CPU register map

	2.3 Global configuration register (CFG_GCR)
	2.3.1 Activation level
	2.3.2 SWIM disable
	2.3.3 Description of global configuration register (CFG_GCR)
	2.3.4 Global configuration register map and reset values
	Table 3. CFG_GCR register map

	3 Single wire interface module (SWIM) and debug module (DM)
	3.1 Introduction
	3.2 Main features
	Figure 3. SWIM pin connection

	3.3 SWIM modes

	4 Flash program memory and data EEPROM (Flash)
	4.1 Introduction
	4.2 Glossary
	4.3 Flash main features
	4.4 Memory organization
	Figure 4. Low density STM8L101x Flash program and data EEPROM organization
	4.4.1 User boot area (UBC)
	Figure 5. UBC area size definition for low density STM8L101x devices

	4.4.2 Data EEPROM (DATA)
	4.4.3 Main program area
	4.4.4 Option bytes

	4.5 Memory protection
	4.5.1 Readout protection
	4.5.2 Memory access security system (MASS)

	4.6 Memory programming
	4.6.1 Byte programming
	4.6.2 Word programming
	4.6.3 Block programming
	Table 4. Block size

	4.7 ICP and IAP
	Table 5. Memory access versus programming method

	4.8 Flash registers
	4.8.1 Flash control register 1 (FLASH_CR1)
	4.8.2 Flash control register 2 (FLASH_CR2)
	4.8.3 Flash program memory unprotecting key register (FLASH_PUKR)
	4.8.4 Data EEPROM unprotection key register (FLASH_DUKR)
	4.8.5 Flash status register (FLASH_IAPSR)
	4.8.6 Flash register map and reset values
	Table 6. Flash register map

	5 Interrupt controller (ITC)
	5.1 ITC introduction
	5.2 Interrupt masking and processing flow
	Table 7. Software priority levels
	Figure 6. Interrupt processing flowchart
	5.2.1 Servicing pending interrupts
	Figure 7. Priority decision process

	5.2.2 Interrupt sources

	5.3 Interrupts and low power modes
	5.4 Activation level/low power mode control
	5.5 Concurrent and nested interrupt management
	5.5.1 Concurrent interrupt management mode
	Figure 8. Concurrent interrupt management

	5.5.2 Nested interrupt management mode
	Table 8. Vector address map versus software priority bits
	Figure 9. Nested interrupt management

	5.6 External interrupts
	Table 9. External interrupt sensitivity

	5.7 Interrupt instructions
	Table 10. Dedicated interrupt instruction set

	5.8 Interrupt mapping
	5.9 ITC and EXTI registers
	5.9.1 CPU condition code register interrupt bits (CCR)
	5.9.2 Software priority register x (ITC_SPRx)
	5.9.3 External interrupt control register 1 (EXTI_CR1)
	5.9.4 External interrupt control register 2 (EXTI_CR2)
	5.9.5 External interrupt control register 3 (EXTI_CR3)
	5.9.6 External interrupt status register 1 (EXTI_SR1)
	5.9.7 External interrupt status register 2 (EXTI_SR2)
	5.9.8 External interrupt port select register (EXTI_CONF)
	5.9.9 ITC and EXTI register map and reset values
	Table 11. ITC and EXTI register map

	6 Power supply
	Figure 10. Power supply overview

	7 Reset (RST) and voltage detection
	Figure 11. Reset circuit
	7.1 “Reset state” and “under reset” definitions
	7.2 External reset (NRST pin)
	7.2.1 Asynchronous external reset description
	7.2.2 Configuring NRST/PA1 pin as general purpose output

	7.3 Internal reset
	7.3.1 Power-on reset (POR)
	7.3.2 Independent watchdog reset
	7.3.3 SWIM reset
	7.3.4 Illegal opcode reset

	7.4 RST registers
	7.4.1 Reset pin configuration register (RST_CR)
	7.4.2 Reset status register (RST_SR)

	7.5 RST register map and reset values
	Table 12. RST register map and reset values

	8 Clock control (CLK)
	Figure 12. Clock structure
	8.1 Master clock (HSI clock)
	8.1.1 Peripheral clock gating (PCG)

	8.2 LSI clock
	8.3 Configurable clock-output capability (CCO)
	8.4 CLK registers
	8.4.1 Clock divider register (CLK_CKDIVR)
	8.4.2 Peripheral clock gating register (CLK_PCKENR)
	Table 13. Peripheral clock gating bits

	8.4.3 Configurable clock output register (CLK_CCOR)
	8.4.4 CLK register map and reset values
	Table 14. CLK register map and reset values

	9 Power management
	9.1 General considerations
	9.2 Managing the clock for low consumption
	9.2.1 Slowing the system clocks
	9.2.2 Peripheral clock gating

	9.3 Switching peripherals off
	9.3.1 Analog peripherals
	9.3.2 Digital peripherals

	9.4 Low power modes
	Table 15. Low power mode management
	9.4.1 Wait mode
	9.4.2 Halt mode
	9.4.3 Active-halt mode

	9.5 WFE registers
	9.5.1 WFE control register 1 (WFE_CR1)
	9.5.2 WFE control register 2 (WFE_CR2)

	9.6 WFE register map and reset values
	Table 16. WFE register map

	10 General purpose I/O ports (GPIO)
	10.1 Introduction
	10.2 GPIO main features
	Figure 13. GPIO block diagram

	10.3 Port configuration and usage
	Table 17. I/O port configuration summary
	10.3.1 Input modes
	10.3.2 Output modes

	10.4 Reset configuration
	10.5 Unused I/O pins
	10.6 Low power modes
	Table 18. Effect of low power modes on GPIO ports

	10.7 Input mode details
	10.7.1 Alternate function input
	10.7.2 Interrupt capability

	10.8 Output mode details
	10.8.1 Alternate function output
	10.8.2 Slope control

	10.9 GPIO registers
	10.9.1 Port x output data register (Px_ODR)
	10.9.2 Port x pin input register (Px_IDR)
	10.9.3 Port x data direction register (Px_DDR)
	10.9.4 Port x control register 1 (Px_CR1)
	10.9.5 Port x control register 2 (Px_CR2)
	10.9.6 GPIO register map and reset values
	Table 19. GPIO register map

	11 Auto-wakeup (AWU)
	11.1 Introduction
	11.2 LSI clock measurement
	Figure 14. AWU block diagram

	11.3 AWU functional description
	11.3.1 AWU operation
	11.3.2 Time base selection
	Table 20. Time base calculation table

	11.3.3 LSI clock frequency measurement

	11.4 AWU registers
	11.4.1 Control/status register (AWU_CSR)
	11.4.2 Asynchronous prescaler register (AWU_APR)
	11.4.3 Timebase selection register (AWU_TBR)
	11.4.4 AWU register map and reset values
	Table 21. AWU register map

	12 Beeper (BEEP)
	12.1 Introduction
	Figure 15. Beep block diagram

	12.2 BEEP functional description
	12.2.1 Beeper operation
	12.2.2 Beeper calibration

	12.3 BEEP registers
	12.3.1 Beep control/status register (BEEP_CSR)
	12.3.2 BEEP register map and reset values
	Table 22. BEEP register map

	13 Independent watchdog (IWDG)
	13.1 Introduction
	13.2 IWDG functional description
	Figure 16. Independent watchdog block diagram
	Table 23. Min/Max IWDG timeout (LSI clock frequency = 38 kHz)

	13.3 IWDG registers
	13.3.1 Key register (IWDG_KR)
	13.3.2 Prescaler register (IWDG_PR)
	13.3.3 Reload register (IWDG_RLR)
	13.3.4 IWDG register map and reset values
	Table 24. IWDG register map

	14 Inter-integrated circuit (I2C) interface
	14.1 Introduction
	14.2 I2C main features
	14.3 I2C general description
	Figure 17. I2C bus protocol
	Figure 18. I2C block diagram

	14.4 I2C functional description
	14.4.1 I2C slave mode
	Figure 19. Transfer sequence diagram for slave transmitter
	Figure 20. Transfer sequence diagram for slave receiver

	14.4.2 I2C master mode
	Figure 21. Transfer sequence diagram for master transmitter
	Figure 22. Method 1: transfer sequence diagram for master receiver
	Figure 23. Method 2: transfer sequence diagram for master receiver when N >2
	Figure 24. Method 2: transfer sequence diagram for master receiver when N=2
	Figure 25. Method 2: transfer sequence diagram for master receiver when N=1

	14.4.3 Error conditions
	14.4.4 SDA/SCL line control

	14.5 I2C low power modes
	Table 25. I2C interface behavior in low power modes

	14.6 I2C interrupts
	Table 26. I2C Interrupt requests
	Figure 26. I2C interrupt mapping diagram

	14.7 I2C registers
	14.7.1 Control register 1 (I2C_CR1)
	14.7.2 Control register 2 (I2C_CR2)
	14.7.3 Frequency register (I2C_FREQR)
	14.7.4 Own address register LSB (I2C_OARL)
	14.7.5 Own address register MSB (I2C_OARH)
	14.7.6 Data register (I2C_DR)
	14.7.7 Status register 1 (I2C_SR1)
	14.7.8 Status register 2 (I2C_SR2)
	14.7.9 Status register 3 (I2C_SR3)
	14.7.10 Interrupt register (I2C_ITR)
	14.7.11 Clock control register low (I2C_CCRL)
	14.7.12 Clock control register high (I2C_CCRH)
	Table 27. I2C_CCR values for SCL frequency table (fMASTER = 10 MHz or 16 MHz)

	14.7.13 TRISE register (I2C_TRISER)
	14.7.14 I2C register map and reset values
	Table 28. I2C register map

	15 Infrared (IRTIM) interface
	15.1 Introduction
	Figure 27. IR internal hardware connections with TIM2 and TIM3

	15.2 Main features
	15.3 IRTIM register
	15.3.1 Control register (IR_CR)
	15.3.2 IRTIM register map and reset values
	Table 29. IR register map

	16 Timer overview
	Table 30. Timer characteristics
	16.1 Timer feature comparison
	Table 31. Timer feature comparison

	16.2 Glossary of timer signal names
	Table 32. Glossary of internal timer signals

	17 16-bit general purpose timer (TIM2/TIM3)
	17.1 Introduction
	17.2 TIMx main features
	Figure 28. TIMx general block diagram

	17.3 TIMx time base unit
	Figure 29. Time base unit
	17.3.1 Reading and writing to the 16-bit counter
	Figure 30. 16-bit read sequence for the counter (TIMx_CNTR)

	17.3.2 Write sequence for 16-bit TIMx_ARR register
	17.3.3 Prescaler
	17.3.4 Up-counting mode
	Figure 31. Counter in up-counting mode
	Figure 32. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2
	Figure 33. Counter update event when ARPE=1 (TIMx_ARR preloaded)

	17.3.5 Down-counting mode
	Figure 34. Counter in down-counting mode
	Figure 35. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2
	Figure 36. Counter update when ARPE=1 (ARR preloaded), with prescaler = 1

	17.3.6 Center-aligned mode (up/down counting)
	Figure 37. Counter in center-aligned mode
	Figure 38. Counter timing diagram, CK_PSC divided by 1, TIMx_ARR=06h, ARPE=1

	17.4 TIMx clock/trigger controller
	Figure 39. Clock/trigger controller block diagram
	17.4.1 Prescaler clock (CK_PSC)
	17.4.2 Internal clock source (fMASTER)
	Figure 40. Control circuit in normal mode, fMASTER divided by 1

	17.4.3 External clock source mode 1
	Figure 41. TI2 external clock connection example
	Figure 42. Control circuit in external clock mode 1

	17.4.4 External clock source mode 2
	Figure 43. External trigger input block
	Figure 44. Control circuit in external clock mode 2

	17.4.5 Trigger synchronization
	Figure 45. Control circuit in trigger mode
	Figure 46. Control circuit in trigger reset mode
	Figure 47. Control circuit in trigger gated mode
	Figure 48. Control circuit in external clock mode 2 + trigger mode

	17.4.6 Synchronization from other timers
	Figure 49. Timer chaining system implementation example
	Figure 50. Trigger/master mode selection blocks
	Figure 51. Master/slave timer example
	Figure 52. Gating Timer B with OC1REF of Timer A
	Figure 53. Gating Timer B with the counter enable signal of Timer A (CNT_EN)
	Figure 54. Triggering Timer B with update event of Timer A (TIMERA-UEV)
	Figure 55. Triggering Timer B with counter enable CNT_EN of Timer A
	Figure 56. Triggering Timer A and B with Timer A TI1 input

	17.5 TIMx capture/compare channels
	Figure 57. Capture/compare channel 1 main circuit
	Figure 58. 16-bit read sequence for the TIMx_CCRi register in capture mode
	17.5.1 Write sequence for 16-bit TIMx_CCRi registers
	17.5.2 Input stage
	Figure 59. Channel input stage block diagram
	Figure 60. Input stage of TIM 1 channel 1

	17.5.3 Input capture mode
	Figure 61. PWM input signal measurement
	Figure 62. PWM input signal measurement example

	17.5.4 Output stage
	Figure 63. Channel output stage block diagram
	Figure 64. Output stage of channel 1

	17.5.5 Forced output mode
	17.5.6 Output compare mode
	Figure 65. Output compare mode, toggle on OC1

	17.5.7 PWM mode
	Figure 66. Edge-aligned counting mode PWM mode 1 waveforms (ARR=8)
	Figure 67. Center-aligned PWM waveforms (ARR=8)
	Figure 68. Example of one pulse mode

	17.5.8 Using the break function
	Figure 69. Behavior of outputs in response to a break

	17.5.9 Clearing the OCiREF signal on an external event
	Figure 70. ETR activation

	17.5.10 Encoder interface mode
	Table 33. Counting direction versus encoder signals
	Figure 71. Example of counter operation in encoder interface mode
	Figure 72. Example of encoder interface mode with IC1 polarity inverted

	17.6 TIMx interrupts
	17.6.1 TIMx wait-for-event capability

	17.7 TIMx registers
	17.7.1 Control register 1 (TIMx_CR1)
	17.7.2 Control register 2 (TIMx_CR2)
	17.7.3 Slave mode control register (TIMx_SMCR)
	17.7.4 External trigger register (TIMx_ETR)
	17.7.5 Interrupt enable register (TIMx_IER)
	17.7.6 Status register 1 (TIMx_SR1)
	17.7.7 Status register 2 (TIMx_SR2)
	17.7.8 Event generation register (TIMx_EGR)
	17.7.9 Capture/compare mode register 1 (TIMx_CCMR1)
	17.7.10 Capture/compare mode register 2 (TIMx_CCMR2)
	17.7.11 Capture/compare enable register 1 (TIMx_CCER1)
	17.7.12 Counter high (TIMx_CNTRH)
	17.7.13 Counter low (TIMx_CNTRL)
	17.7.14 Prescaler register (TIMx_PSCR)
	17.7.15 Auto-reload register high (TIMx_ARRH)
	17.7.16 Auto-reload register low (TIMx_ARRL)
	17.7.17 Capture/compare register 1 high (TIMx_CCR1H)
	17.7.18 Capture/compare register 1 low (TIMx_CCR1L)
	17.7.19 Capture/compare register 2 high (TIMx_CCR2H)
	17.7.20 Capture/compare register 2 low (TIMx_CCR2L)
	17.7.21 Break register (TIMx_BKR)
	Table 34. Output control bit for OCx channels with break feature

	17.7.22 Output idle state register (TIMx_OISR)
	17.7.23 TIMx register map and reset values
	Table 35. TIMx register map

	18 8-bit basic timer (TIM4)
	18.1 Introduction
	Figure 73. TIM4 block diagram

	18.2 TIM4 main features
	18.3 TIM4 interrupts
	18.4 TIM4 clock selection
	18.5 TIM4 registers
	18.5.1 Control register 1 (TIM4_CR1)
	18.5.2 Control register 2 (TIM4_CR2)
	18.5.3 Slave mode control register (TIM4_SMCR)
	18.5.4 Interrupt enable register (TIM4_IER)
	18.5.5 Status register 1 (TIM4_SR1)
	18.5.6 Event generation register (TIM4_EGR)
	18.5.7 Counter (TIM4_CNTR)
	18.5.8 Prescaler register (TIM4_PSCR)
	18.5.9 Auto-reload register (TIM4_ARR)
	18.5.10 TIM4 register map and reset values
	Table 36. TIM4 register map

	19 Serial peripheral interface (SPI)
	19.1 Introduction
	19.2 SPI main features
	19.3 SPI functional description
	19.3.1 General description
	Figure 74. SPI block diagram
	Figure 75. Single master/ single slave application
	Figure 76. Hardware/software slave select management
	Figure 77. Data clock timing diagram

	19.3.2 Configuring the SPI in slave mode
	19.3.3 Configuring the SPI master mode
	19.3.4 Configuring the SPI for simplex communications
	19.3.5 Data transmission and reception procedures
	Figure 78. TXE/RXNE/BSY behavior in full duplex mode (RXONLY = 0). Case of continuous transfers
	Figure 79. TXE/RXNE/BSY behavior in slave / full duplex mode (BDM = 0, RXONLY = 0). Case of continuous transfers
	Figure 80. TXE/BSY in master transmit-only mode (BDM = 0 and RXONLY = 0). Case of continuous transfers
	Figure 81. TXE/BSY in slave transmit-only mode (BDM = 0 and RXONLY = 0). Case of continuous transfers
	Figure 82. RXNE behavior in receive-only mode (BDM = 0 and RXONLY = 1). Case of continuous transfers
	Figure 83. TXE/BSY behavior when transmitting (BDM = 0 and RXLONY = 0). Case of discontinuous transfers

	19.3.6 Status flags
	19.3.7 Disabling the SPI
	19.3.8 Error flags
	19.3.9 SPI low power modes
	Table 37. SPI behavior in low power modes

	19.3.10 SPI interrupts
	Table 38. SPI interrupt requests

	19.4 SPI registers
	19.4.1 SPI control register 1 (SPI_CR1)
	19.4.2 SPI control register 2 (SPI_CR2)
	19.4.3 SPI interrupt control register (SPI_ICR)
	19.4.4 SPI status register (SPI_SR)
	19.4.5 SPI data register (SPI_DR)

	19.5 SPI register map and reset values
	Table 39. SPI register map and reset values

	20 Universal synchronous/asynchronous receiver transmitter (USART)
	20.1 USART introduction
	20.2 USART main features
	20.3 USART functional description
	Figure 84. STM8L USART block diagram
	20.3.1 USART character description
	Figure 85. Word length programming

	20.3.2 Transmitter
	Figure 86. Configurable STOP bits
	Figure 87. TC/TXE behavior when transmitting

	20.3.3 Receiver
	Figure 88. Start bit detection
	Figure 89. Data sampling for noise detection
	Table 40. Noise detection from sampled data

	20.3.4 High precision baud rate generator
	Figure 90. How to code USART_DIV in the BRR registers
	Table 41. Baud rate programming and error calculation

	20.3.5 USART receiver’s tolerance to clock deviation
	Table 42. USART receiver ‘s tolerance when USART_DIV is 0
	Table 43. USART receiver’s tolerance when USART_DIV is different from 0

	20.3.6 Parity control
	Table 44. Frame formats

	20.3.7 Multi-processor communication
	Figure 91. Mute mode using Idle line detection
	Figure 92. Mute mode using address mark detection

	20.3.8 USART synchronous communication
	Figure 93. USART example of synchronous transmission
	Figure 94. USART data clock timing diagram (M=0)
	Figure 95. USART data clock timing diagram (M=1)
	Figure 96. RX data setup/hold time

	20.4 USART low power modes
	Table 45. USART interface behavior in low power modes

	20.5 USART interrupts
	Table 46. USART interrupt requests
	Figure 97. USART interrupt mapping diagram

	20.6 USART registers
	20.6.1 Status register (USART_SR)
	20.6.2 Data register (USART_DR)
	20.6.3 Baud rate register 1 (USART_BRR1)
	20.6.4 Baud rate register 2 (USART_BRR2)
	20.6.5 Control register 1 (USART_CR1)
	20.6.6 Control register 2 (USART_CR2)
	20.6.7 Control register 3 (USART_CR3)
	20.6.8 Control register 4 (USART_CR4)
	20.6.9 USART register map and reset values
	Table 47. USART register map

	21 Comparators (COMP)
	21.1 Introduction
	21.2 Main features
	Figure 98. Comparator block diagram

	21.3 Functional description
	21.4 Low power modes
	Table 48. Comparator behavior in low power modes

	21.5 Interrupts
	Table 49. Comparator interrupt requests

	21.6 COMP registers
	21.6.1 Comparator control register (COMP_CR)
	21.6.2 Comparator control status register (COMP_CSR)
	21.6.3 Comparator channel selection (COMP_CCS)
	21.6.4 COMP register map and reset values
	Table 50. Comparator register map

	22 Revision history
	Table 51. Document revision history

